SubrataPal,C.M.Ko,andZi-weiLin
CyclotronInstituteandPhysicsDepartment,TexasA&MUniversity,CollegeStation,Texas77843-3366Withinamultiphasetransportmodelwestudyphimesonproductioninrelativisticheavyioncollisionsfrombothsuperpositionofinitialmultipleproton-protoninteractionsandthesecondarycollisionsintheproducedhadronicmatter.Theyieldofphimesonsisthenreconstructedfromtheirdecayingproductofeitherthekaon-antikaonpairsorthedimuonpairs.Sincethekaon-antikaonpairsatmidrapiditywithlowtransversemomentaarepredominantlyrescatteredorabsorbedinthehadronicmedium,theycannotbeusedtoreconstructthephimesonandleadthustoasmallerreconstructedphimesonyieldthanthatreconstructedfromthedimuonchannel.Within-mediummassmodificationsofkaonsandφmesons,theφyieldfromdimuonsisfurtherenhancedcomparedtothatfromthekaon-antikaonpairs.ThemodelresultiscomparedwiththeexperimentaldataattheCERN/SPSandRHICenergiesanditsimplicationstoquark-gluonplasmaformationarediscussed.
PACSnumbers:24.10.Cn,24.10.Pa,25.75.Dw
I.INTRODUCTION
Oneofthemajorgoalsinrelativisticheavyioncollisionsistostudythepropertiesofhotanddensematterandpossiblytocreateandidentifyanewformofmatter,thequarkgluonplasma(QGP).Itwassuggested[1]thatenhancedstrangenessproductioncouldserveasanimportantsignalforthedeconfinedmatter.Thedominantproductionofss¯pairsviagluon-gluoninteractionmayleadtostrangeness(chemicalandflavor)equilibrationtimescomparabletothelifetimeoftheplasmaandmuchshorterthanthatofathermallyequilibratedhadronicfireball.Thesubsequenthadronizationisthenexpectedtoresultinanenhancedproductionofstrangeandmultistrangeparticlesandantiparticles.Inparticular,ithasbeenarguedthatwiththeformationofquark-gluonplasmanotonlytheproductionofphimesons,whichconsistofss¯,isenhancedbuttheyalsoretaintheinformationontheconditionsofthehotplasmaasitisbelievedthatphimesonsinteractweaklyinthehadronicmatterandthereforefreezeoutquiteearlyfromthesystem[2].
Usingaprotonorsulfurprojectileat200GeV/nucleonandatungstenoruraniumtarget,phimesonproductionhasbeenpreviouslystudiedatCERN/SPSbytheNA38Collaboration[3]andtheHELIOS-3Collaboration[4]viathedimuoninvariantmassspectra.Thedoubleratio(φ/(ω+ρ0))SU(W)/(φ/(ω+ρ0))pWhasbeenmeasuredandwasfoundtohaveavalueof2∼3.Varioustheoreticalattemptshavebeenmadetounderstandthisenhancement.Inparticular,anenhancementofphimesonyieldmaybeasignatureoftheformationofaquarkgluonplasmainthecollisions[2].However,thisenhancementcanalsobeexplainedeitherusinghadronicmodelsifonetakesintoaccountthereducedphimesonmassinnuclearmedium[5]orviathefragmentationofcolorropesthatareformedfromtheinitialstrings[6].
Recently,phimesonproductionhasalsobeenmeasuredincentralPb+Pbcollisionsat158AGeVattheCERN/SPS.TheNA49Collaboration[7]hasidentifiedthephimesonviathedecaychannelφ→K+K−,whiletheNA50Collaboration[8]measureditusingφ→µ+µ−decay.ItwasfoundthattheextractednumberofphimesonfromdimuonchannelexceedsbyafactorbetweentwoandfourfromthatextractedfromtheK+K−channel.ThisdifferencehasbeenattributedtothefactthatnotallphimesonscanbereconstructedfromK+K−resultingfromtheirdecaysduetorescatteringoftheK+andK−inthehadronicmatter.Thesuppressionfactorcanbe40-60%basedontheRQMDmodel[9].Thiseffecthasbeenfurtherstudiedinaschematicmodelbyincludingtheeffectofchangingkaonmassesinthehadronicmedium[10].
Inthepresentpaper,usingamultiphasetransport(AMPT)modelwemakeadetailedandconsistentstudyoftheproductionofphimesonsreconstructedfromtheK+K−andµ+µ−decaychannels.Theeffectsofin-mediummassmodificationtothephimesonyieldandspectraarealsostudiedandarecomparedwiththeexperimentalfindingsbytheNA49and√NA50CollaborationsattheSPSenergies.WealsopresentthephimesonyieldandspectraattheRHICenergyof
II.THEMODEL
A.AMultiphasetransportmodel
Todescribetheheavyioncollisiondynamics,weemployamultiphasetransportmodel(AMPT)thatincludesboththeinitialpartonicandfinalhadronicinteractions.TheAMPTmodel[11]isahybridmodelthatusesasinputtheminijetpartonsfromthehardprocessesandthestringsfromthesoftprocessesintheHIJINGmodel[12].ThedynamicalevolutionofpartonsarethenmodeledbytheZPC[13]partoncascademodel,whilethetransitionfromthepartonicmattertothehadronicmatterisbasedontheLundstringfragmentationmodel[14].Thefinal-statehadronicscatteringsaremodeledbytheARTmodel[15].TheAMPTmodelhasbeenquitesuccessfulindescribingthemeasuredtransversemomentaofpionsandkaons,andtherapiditydistributionsofchargeparticles[16,17]aswellastheparticletoantiparticleratios[18]inheavyioncollisionsatbothSPSandRHIC.Includingmeltingofinitialstringstopartons,themodelcanalsoaccountfortheobservedlargeellipticflow[19]andthemeasuredtwo-pioncorrelationfunction[20]atRHIC.IntheoriginalAMPTmodel,phimesonsareproducedonlyfrominitialstringfragmentation.Inthepresentwork,weextendittoalsoincludephimesonproductionandinteractionsinthehadronicmatter.
B.phimesonproductionandinteractions
ForphimesonproductionfromhadronscatteringsintheARTmodel,weconsiderboththebaryon-baryonin-teractionchannelsBB→φNNandthemeson-baryonchannels(π,ρ)B→φB,whereB≡N,∆,N∗.Thecrosssectionsfortheseprocesseshavebeenevaluatedintheone-boson-exchangemodel[21]andareusedhere.WehavealsoincludedphimesonproductionfromthereactionKΛ→φNwiththecrosssectiontakenfromRef.[5]basedonakaon-exchangemodel.
Phimesoncanbefurtherproducedfromkaon-antikaonscattering.Forakaon-antikaonpairwithinvariantmass
¯→φistakentobeaBreit-WignerformM,thetotalcrosssectionforKK
σKK¯→φ(M)=
3π
22(M2−m2φ)+(mφΓφ)
,(1)
¯isgivenbywherethephimesondecaywidthtoKK
2
gφK¯K
Γφ→KK¯(M)=
6m2φ
,(2)
2
withthecouplingconstantgφK¯/4π≈1.69determinedfromtheempiricalwidthof3.7MeV,correspondingto83%Kofthetotalwidth,atM=mφ.
Forphimesoninteractionswithbaryons,weincludetheabsorptionreactionsgivenbytheinversereactionsofphimesonproductionfrommeson-baryoninteractionsgivenabove.Thecorrespondingcrosssectionsareobtainedusingthedetailedbalancerelations.Thecrosssectionforphimesonelasticscatteringwithanucleonistakentobe0.56mbasextractedfromthedataonphi-mesonphotoproductionusingthevectormesondominancemodel[22].ThesecrosssectionsareshownintheupperleftpanelofFig.1.
Phimesonscanalsobescatteredbymesons.UsingeffectivehadronicLagrangians,wherecouplingconstantsweredeterminedfromexperimentalpartialdecayrates,thetotalcollisionalwidthofφduetothereactionsφπ→KK∗,φρ→KK,φK→φKandφφ→KKwasfoundtobelessthan35MeV[23](whereKdenoteseitherakaonoranantikaonasappropriate).However,recentcalculations[24]basedonaHiddenLocalSymmetryLagrangianshowsthatthecollisionalratesofφwithpseudoscalar(π,K)andvector(ρ,ω,K∗,φ)mesonsareappreciablylarge,especiallyfortheK∗,resultinginamuchsmallermeanfreepath,ofabout2.4fminahadronicmatterattemperatureT>170MeV,comparedtothetypicalhadronicsystemsizeof∼10−15fmcreatedinheavyioncollisions.Wehaveincludedallthesepossibleinteractions,i.e.,φM→(K,K∗)(K,K∗),andφ(K,K∗)→M(K,K∗),whereM≡(π,ρ,ω)withcrosssectionsdeterminedfromthepartialcollisionalwidthsgiveninRef.[24].Specifically,wetakematrixelements
|M|2kf/(kis2),wheresisthec.m.energy
andkiandkfare,respectively,theinitialandfinalc.m.momentaofthecollidinghadrons.Thecrosssectionsfortheinversereactionsoftheaboveprocessesarethenobtainedfromthedetailedbalancerelations.InFig.1,we
2
showthecrosssectionsforphi-pionandphi-rhoscattering(upperrightpanel),phi-kaonscattering(lowerleftpanel),andphi-K∗scattering(lowerrightpanel).Theelasticcrosssectionofphimesonwithothermesonscanbesimilarlyobtainedandisfoundtobeabout2mb. 10φN→KΛφN→πNφN→π∆φN→ρNφM → (K,K*)(K,K*)101: φπ→KK1σ (mb)3σ (mb)1422: φπ→K*K*0.13: φρ→KK4: φρ→K*K*0.0100.20.40.60.81100.20.40.60.81√s − √s0 (GeV)φK → M(K,K*)10πK*ρK*ωK√s − √s0 (GeV)φK* → M(K,K*)ρK*σ (mb)σ (mb)10ρKπK*ρK1ωK*πK00.20.40.60.811πK00.20.40.60.81√s − √s0 (GeV)√s − √s0 (GeV)FIG.1.Phimesonscatteringcrosssectionsbynucleons(upperleftpanel),mesons(upperrightpanel),kaons(lowerleftpanel),andK∗(lowerrightpanel).
C.mediumeffects
Sincethephimesonmassisonly32MeVabovethekaon-antikaonthreshold,itisstronglycoupledtothekaonandantikaondynamics,i.e.,tothestrangenesscontentofthesurroundingmedium.Asmallchangeinthemassesofeitherthephimesonorkaonthuswouldappreciablyaffectthedecaywidthofphimeson.
Studiesbasedonvariousapproaches,suchastherelativisticmean-fieldtheory[25]andthechiraleffectiveLagrangian[26],haveledtoageneralconsensusthatK+feelsaratherweakrepulsivepotentialwhiletheK−feelsarelativelystrongerattractivepotential.Withsuchmodifications,thekaonyieldandspectracouldbesuccessfullyexplainedatSISenergies(1-2AGeV)[27–29]andevenatAGSenergy(∼11AGeV)[30].Inthepresentstudy,weadoptthekaonandantikaonenergiesfromchiraleffectiveLagrangian,i.e.,
2
221/2
±bKρ,ωK,K¯=mK+k−aKρS+(bKρ)
(3)
223
wherebK=3fπ/8≈0.333GeVfm3,aK≈0.22GeV2fm3forkaons,andaK¯≈0.45GeVfmforantikaons.TheK+potential,definedbyUK=ωK−
Forthein-mediumphimesonmass,theQCDsumrulestudiesshowthatitdecreasesslightlyinhotdensematter[34–36].UsingtheresultfromRef.[34],wehave
m∗φ
ρ0
,
(4)
whereρ0isthenormalnuclearmatterdensity.
Thein-mediumdecaywidthofphimesontokaon-antikaonpairisthengivenby
Γ∗¯(M)φ→KK
=
2
gφK¯K
56m∗φ
Althoughthephimesonmassdecreasesinthemedium,thelargerreductionoftheoverallkaon-antikaonmasswith
increasingdensityresultsinanincreaseofphimesonwidthΓ∗¯inthemedium.Atdensityρ=2ρ0,thephiφ→KKmesonin-mediumwidthisabout45MeV.
III.RECONSTRUCTIONOFPHIMESONS
∗2∗2
∗∗23/2∗2
.(m−(m−m)(mφ−(m∗+m)¯¯φKKKK
(5)
Sincephimesonisunstable,itcanonlybedetectedfromitsdecayproductofeitherthekaon-antikaonpairorthe
leptonpair.Thekaon-antikaonpairdecayingfromaphimesonis,however,likelytoundergoappreciablerescatteringinthemedium,andthiswouldleadtoareconstructedinvariantmasssituatedoutsidetheoriginalphimesonpeak.Infact,themomentumtransfertoakaonsufferingonecollisionwithapionatT=150MeVcanbeestimatedtobeabout45MeVwhichismuchlargerthanthetotalphimesonwidthofΓφ=4.45MeV.Hencephimesonsdecayinginthedensemediumisdifficulttobeidentifiedviareconstructedkaon-antikaonpairs.Incontrast,dileptonshavenegligiblefinal-stateinteractionswiththesurroundinghadronicmediumandthereforeescapeessentiallyunscathedduringtheentireevolutionofthesystem.Dileptonsarethusconsideredtocarryusefulinformationabouthadronpropertiesinhotanddensehadronicmatter[37],whichareexpectedtobedifferentfromthoseinfreespace.
A.dileptons
Todetectaphimesonfromitsdimuondecay,weneedthedecaywidthforφ→µ+µ−[38],whichinthemediumis
Γ∗φ→µ+µ−(M)
=Cµ+µ−
4
m∗φ
M2
1/2
1+
2m2µ
Γφ
,(7)
whereNφ(t)denotesthenumberofphimesonattimet.Intheabove,thefirsttermcorrespondstodimuonproduction
beforethefreeze-outtimeoftf=35fm/cconsideredinourcalculation,whilethesecondtermreferstodimuonemissionafterfreeze-out.Thereconstructedphimesonnumberisobtainedbydividingtheaboveexpressionbythedimuonbranchingratioinfree-spaceofΓφ→µ+µ−/Γφ=3.7×10−4.Sincemostpreviousstudies[9,10]haveneglectedthephimesonannihilationandproductionchannelsviabaryonsandespeciallybypseudoscalarandvectormesons,thephimesonlifetimeinthesestudiesisthuscomparabletothelifetimeofthesystem.Consequently,phimesonsfromdimuonchannelgetsignificantcontributionsonlyafterfreeze-out.
B.kaons
Thenumberofkaon-antikaonpairstemmingfromphimesondecaycanbesimilarlyexpressedasEq.(7)fordimuonproduction,i.e.,
4
NKK¯=
tf
0
dtNφ(t)Γ∗¯(M)+Nφ(tf)φ→KK
Γφ→KK¯
652dN/dt (c/fm)1.54φ ↔ KK+−Nφ(t)321005101520253010.50051015202530t (fm/c)654t (fm/c)dN/dt (c/fm)4dN/dt (c/fm)φ+M ↔ (K,K*)+(K,K*)φ+K* ↔ M+(K,K*)321φ+K ↔ M+(K,K*)200510152000510t (fm/c)t (fm/c)FIG.2.Upperleftpanel:Timeevolutionofmidrapidity(|y|<0.5)phimesonfromPb+PbcollisionsattheSPSenergyof158AGeVatanimpactparameterofb≤3.5fmintheAMPTmodel.Theresultsareforwithout(solidcurve)andwith(dashedcurve)in-mediummassmodifications,andwithfurtherincreaseofphimesonnumberbytwointheHIJINGmodel(dottedcurve).Thephimesonyieldobtainedfrompurelyhadronicrescatteringwithoutanymediumeffectsisshownbydash-dottedcurve.Upperrightpanel:Thephimesonproduction(solidcurves)anddecayrates(dashedcurves)fortheprocessφ↔K+K−.Thethincurvesarewithoutin-mediummassmodificationwhilethethickonesincludemediummassmodification.Lowerpanels:φproduction(solidcurves)andabsorptionrates(dashedcurves)fordifferentchannelswithoutanymassmodifications;whereM≡π,ρ,ω.
curveintheupperleftpanelofFig.2,thisleadstoasuppressedpeakinthetimeevolutionofphimesonabundancebutdoesnotchangemuchthephimesonnumberatlatertimes,whencomparedtothatinthecaseofincludingtheinitialphimesonsfromstringdecays.
2.rapiditydistribution
TherapiditydistributionofphimesonsreconstructedfromK+K−andµ+µ−channelsincentralPb+Pbcollisionat158AGeVisshowninFig.3.Inabsenceofanymediumeffects,theresultsforphimesonsfromthetheK+K−channel(thinsolidcurve)areingoodagreementwiththeNA49experimentaldata[7](solidcircles).Withfree-spacedecaywidthofphimeson,therapiditydistributionofallphimesonsfromtheK+K−,neglectingtheirscattering,isidenticaltothatreconstructedfromtheµ+µ−channel(thindashedcurve).Duetorescatteringorabsorptionofthekaonpairs,∼30%ofallφmesonsarelostinthereconstruction,ofwhichabout40%ofthedecayingkaonshaveatleastone(anti)kaonthatsufferelasticscattering.ThemaximumdepletionofphimesonsfromtheK+K−channeloccursatmidrapiditywherekaon-antikaonpairsundergoappreciablescatteringinthedensehadronicmedium.Notethataroundy=0,phimesonfromdimuonchannelisaboutafactor1.7largerthanfromthekaon-antikaonchannel,whichissmallerthanthefactorof2-4enhancementobservedintheNA50data[8].
6
7Pb(158A GeV) + Pb6543210 dN/dY−4−2024YFIG.3.RapiditydistributionofphimesonreconstructedfromK+K−pairs(solidcurves)andfromµ+µ−channel(dashedcurves)forPb+Pbcollisionsat158AGeVatanimpactparameterofb≤3.5fmintheAMPTmodel.Theresultsareforwithout(thincurves)andwith(thickcurves)in-mediummassmodifications.Thedottedcurvecorrespondstophimesonsfromthedimuonchannelwithin-mediummassesandwiththephimesonnumberfromHIJINGincreasedbyafactoroftwo.ThesolidcirclesaretheNA49experimentaldata[7]fromtheK+K−channel.
3.transversemassspectrum
InFig.4,weshowthetransversemassspectraatmidrapidityforphimesonfromkaon-antikaon(solidsquares)anddimuon(opensquares)channelwithoutmediumeffects.ItisseenthatatlowmTthephimesonfromK+K−channelissuppressedduetorescattering.Sincethetransversemomentumofaparticleincreasesduetoincreasingnumberofscatteringandduetopressurebuild-upinsidethesystem,thedecayedkaonsattheearlystages,whicharepredominantlyscattered,thushavelowtransversemomenta.Thetransversemassspectracanbeapproximatelyfittedbyexp(−mT/T).TheinverseslopeparameterTreportedbyNA50[8]fromtheµ+µ−channelfor1.7 ModificationofphimesonandkaonmassesisexpectedtoenhancetheproductionanddecayofphimesoninthemediumandtoleadtoapossiblefurtherincreaseofthesuppressionfactorR(mT).Theabundanceofphimesonasafunctionoftimeofthecollidingsystemwithin-mediummassmodificationisshownintheupperleftpanelofFig.2(dashedcurve).Theabundanceexhibits20%increaseatthepeak,anditfinallymergeswiththefree-spacevalueatlargetimeswhenmediumeffectsarenegligibleandchemicalequilibriuminallchannelssetsin.ThisenhancementcanbemainlyattributedtotheincreaseintheK+K−→φproductionrateduetolargerwidthΓ∗¯inthedenseφ→KKmedium,asshownbythickcurvesintheupperrightpanelofFig.2. 7 Pb(158A GeV)+PbR(mT)10.80.60.40.2101 dN/(mT dmT dy)010000.51mT−m0 (GeV/c)21.510−110−200.20.40.60.811.21.41.61.82mT − m0 (GeV/c)FIG.4.Transversemassspectraformidrapidity(|y|<1)phimesonsreconstructedfromK+K−pairs(solidsymbols)andfromµ+µ−channel(opensymbols)forPb+Pbcollisionsat158AGeVatanimpactparameterofb≤3.5fmintheAMPTmodel.Theresultsareforwithout(squares)andwith(triangles)in-mediummassmodifications.ThesolidcirclesaretheNA49data[7]forφ→K+K−decay,andtheopencirclesaretheNA50data[40]forφ→µ+µ−.IntheinsetisshownasafunctionofmTtheratioR(mT)forphimesonsdecayingtokaon-antikaonpairsthatarenotscatteredtothosedeterminedfromthedimuonchannel.Theresultsareforwithout(squares)andwith(triangles)in-mediummassmodification,andwithafurtherincreaseofphimesonnumberbytwointheHIJINGmodel(circles). TherapiditydistributionofφfromkaonpairsthathavenotsufferedanycollisionisshowninFig.3within-mediummasses(thicksolidcurve),whichisfoundtoliewithintheerrorbarsoftheNA49data.Sincefree-spacebranchingratioisusedtodeterminethephimesonabundancefromthekaonchannel,itisevidentfromEq.(8)thatlargein-mediumwidthΓ∗¯leadstoappreciableproductionandsimultaneousdecayofphimeson,resultinginφ→KK dN/dy≈7.1aty≈0forallthesekaonpairs.Incontrast,sincethebranchingratioforφ→µ+µ−islargelyunalteredinthemedium,thedN/dyofthereconstructedphimesonsaty≈0is4.5andthusabout1.9timeslargerthanthatfromthekaonchannel. Thetransversemassspectrainthekaonicchannelwithmediumeffects(solidtrianglesinFig.4)revealsnearlyidenticalslopeasforthebaremasses.Ontheotherhand,thelargenumberofdimuonproductionatlowmTintheearlystageofcollisionswithin-mediummassesleadstoaslightlysteepermassspectrawithaslopeparameterofT=220MeV.ThisisclearlyseenintheinsetofFig.4(triangles)fortheratioR(mT)wherethesuppressionatlowmTis≃33%. 5.discussions OurresultsonthephimesonyieldreconstructedfromkaonanddimuonchannelsdiffersatmostbyaboutafactoroftwointheAMPTmodel,whichcorrespondsonlytothelowerboundtothedifferencesfoundintheNA49andNA50data.ForasystematiccomparisonwiththeoryitisinstructivetoundertakeanexperimentwhereboththekaonandmuonpairsfromphimesonsaredeterminedinthesamemTandyrange.IfdifferencesaslargeasafactoroffourcorrespondingtotheupperboundoftheNA49andNA50dataisindeedobservedinthesameexperiment,thismaythensuggestthatothermechanisms,suchasformationofcolorrope[6]orquark-gluonplasma[2],areneededforphimesonproduction.IntheQGPscenario,becauseofcopiousproductionofss¯pair,itssubsequenthadronizationmayresultinadramaticincreaseofphimesonabundanceinexcessofthatproducedpurelybyhadronicrescatterings[2].Thephimesonproducedattheinitialstageshouldcontributeprimarilytothedimuonchannel.TomimictheeffectofenhancedphimesonproductioninQGP,wemakeanadhocincreaseinthephimesonnumberbyafactoroftwointheHIJINGmodel.ThetimeevolutionofNφisillustratedinFig.2(dottedcurve)wherethephimesonyield,insteadofexhibitingapeak,rapidlydecreasestoitsequilibriumvaluewhichcorroboratesthefindingsofRef.[24].Includingalsothemediumeffect,therapiditydistributionfromnon-scatteredkaonisincreasedbyanother∼8%, 8 whereastheyieldfromµ+µ−channelisconsiderablyenhanced(dottedcurveinFig.3).TheresultingsuppressionfactorR(mT)atlowmTis≈21%asisevidentfromtheinsetofFig.4(circles). Theimportanceofinitialphimesonstothedimuonyieldisalsoseeninthescenarioofneglectingphimesonsfromtheinitialstringdecays.Inthiscase,wefindthatthephinumberobtainedfromtheK+K−channelisessentiallyunaffectedduetochemicalequilibrationviathehadronicscatterings,butthephimesonreconstructedfromdimuonsis,however,significantlysuppressed. B.RHIC 108 dN/dY6420101−6−4−2Y02461/(2πmT) dN/(dmT dy) 10010−110−200.20.40.60.8121.21.4mT − m0 (GeV/c)FIG.5.Therapiditydistribution(toppanel)andthetransversemassspectra(bottompanel)formidrapidity(|y|<0.5)phimesonsreconstructedfromK+K−pairs(solidcurves)andfromµ+µ−channel(dashedcurves)forAu+Aucollisionsat √ RHICenergyof s=130A GeV.Ofthetotalphimesonyieldof37perevent,about24%ofthesearelostinthekaonicchannelbyhadronicrescatteringandabsorption.NotethatinspiteofenhancedphimesonproductionintheearlystagesofthecollisionascomparedtotheSPSenergy,itsabundanceaty≈0isonlyaboutafactorof1.5largeinthedimuonchannel.ThismaybeattributedtofewerkaonslostbyrescatteringatRHICastheycanescaperapidlyoutofthecollisionzoneunperturbedduetooftheirlargeenergies.ItisseenthatphimesonmultiplicitiesreconstructedfromK+K−pairsatmidrapidityintheAMPTmodelisconsistentwiththeSTARdata[41]. ThetransversemassspectraofφmesonfromthetwochannelsareshowninthebottompanelofFig.5,andcomparedwiththeSTARdata[41]fortheK+K−channel.ComparedtoaslopeparameterofT=379±50MeVinthedata,theAMPTmodelpredictsasmallervalueofT=335MeVinthekaonicchannelintherange0 largeellipticflowobservedinAu+Aucollisionsat √ s=130AGeV,theAMPTmodelgivestheyieldandslopeparameterofphimesonsfromthe KKchannelthatareinreasonableagreementwiththeSTARdata.SimilartotheresultsforheavyioncollisionsatSPS,thephimesonyieldfromthedimuonchannelisabout1.5timeslargerthanthatfromtheK+K−channelintheabsenceofadditionalphimesonproductionduetotheformationoftheinitialpartonicstage.Thisnumberisexpectedtoincreasesignificantlyifweincludesuchenhancedproductionofinitialphimesons.IndeedatRHIC,largeenergydensitiesareexpectedtobereached,andapartonicmatterwithalongerlifetimeandoccupyingalargervolumecouldbeformed.ComparedtoSPSenergy,largerss¯productioninthepartonicstageanditssubsequenthadronizationwouldthereforeresultinanenhancedphimesonabundance,especiallyattheearlystages.Thesephimesonsshouldcontributedominantlyinthedimuonchannelwhilemostofthemwillescapedetectioninthekaonicchannel.ItisthusofgreatinteresttohaveexperimentaldataonphimesonsfromthedimuonmeasurementattheRHICenergy. + − VI.ACKNOWLEDGMENT ThispaperisbasedonworksupportedbytheNationalScienceFoundationunderGrantNos.PHY-9870038andPHY-0098805,theWelchFoundationunderGrantNo.A-1358,andtheTexasAdvancedResearchProgramunderGrantNo.FY99-010366-0081. [12][13][14][15][16][17][18][19][20][21][22][23][24][25][26] [27][28][29][30][31][32][33][34][35][36][37][38] [39][40][41] M.GyulassyandX.N.Wang,Comp.Phys.Comm.83(1994)307.B.Zhang,Comp.Phys.Comm.109(1994)193.T.Sj¨ostrand,Comp.Phys.Comm.82(1994)74.B.A.LiandC.M.Ko,Phys.Rev.C52(1995)2037.B.B.Backetal.,Phys.Rev.Lett.85(2000)3100. K.H.Ackermannetal.,Phys.Rev.Lett.86(2001)402.B.B.Backetal.,nucl-exp/0105011. Z.W.LinandC.M.Ko,Phys.Rev.C65(2002)034904.Z.W.Lin,C.M.Ko,andS.Pal,nucl-th/0204054. W.S.Chung,G.Q.LiandC.M.Ko,Nucl.Phys.A625(1997)347;andreferencestherein.H.Joos,Phys.Lett.B24(1967)103. C.M.KoandD.Seibert,Phys.Rev.C49(1994)2198.L.Alvarez-RusoandV.Koch,nucl-th/0201011. J.Schaffner,J.Bondorf,andI.N.Mishustin,Nucl.Phys.A625(1997)325.D.B.KaplanandA.E.Nelson,Phys.Lett.B175(1986)57; G.E.Brown,C.H.Lee,M.Rho,andV.Thorsson,Nucl.Phys.A567(1994)937;T.Waas,N.Kaiser,andW.Weise,Phys.Lett.B365(1996)12.C.M.Ko,andG.Q.Li,J.Phys.G22(1996)1673; C.M.Ko,V.Koch,andG.Q.Li,Annu.Rev.Nucl.Part.Sci.47(1997)505.G.Q.Li,C.-H.LeeandG.E.Brown,Nucl.Phys.A625(1997)372.G.Q.LiandG.E.Brown,Nucl.Phys.A636(1998)487. S.Pal,C.M.Ko,Z.Lin,andB.Zhang,Phys.Rev.C62(2000)061903(R).T.BarnesandE.S.Swanson,Phys.Rev.C49(1994)1166. E.Friedman,A.Gal,andC.J.Batty,Phys.Lett.B308(1993)6;Nucl.Phys.A579(1994)518;E.Friedman,A.Gal,J.MaresandA.Ciepl´y,Phys.Rev.C60(1999)024314.G.Q.Li,C.-H.LeeandG.E.Brown,Phys.Rev.Lett.79(1997)5214.T.HatsudaandS.H.Lee,Phys.Rev.C46(1992)R34;T.Hatsuda,Nucl.Phys.A544(1992)27c. M.AsakawaandC.M.Ko,Nucl.Phys.A572(1994)732. F.Klingl,T.Waas,andW.Weise,Phys.Lett.B431(1998)254.G.Q.LiandC.M.Ko,Nucl.Phys.A582(1995)731. G.Q.Li,C.M.Ko,andG.E.Brown,Nucl.Phys.A606(1996)568;G.Q.Li,C.M.Ko,G.E.Brown,andH.Sorg,ibid.,611(1996)539;W.S.Chung,C.M.Ko,andG.Q.Li,ibid.,641(1998)357.K.Haglin,Nucl.Phys.A584(1995)719; W.SmithandK.Haglin,Phys.Rev.C57(1998)1499.V.Friese,Dissertation(1999),UniversityofMarburg;D.R¨ohrich,J.Phys.G.27(2001)355. C.Adleretal.,SubmittedtoPhys.Rev.Lett.;http://www.star.bnl.gov. 11 因篇幅问题不能全部显示,请点此查看更多更全内容