搜索
您的当前位置:首页大学物理答案第11章

大学物理答案第11章

来源:小侦探旅游网
第十一章 恒定磁场

11-1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r,螺线管通过的电流相同为I,螺线管中的磁感强度大小BR、Br满足( )

(A) BR2Br (B) BRBr (C) 2BRBr (D)BR4Br

分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比

nRr1 nrR2因而正确答案为(C).

11-2 一个半径为r的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )

(A)2πrB (B) πrB (C)2πrBcosα (D) πrBcosα

题 11-2 图

分析与解 作半径为r 的圆S′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S′的磁通量;

2222ΦmBS.因而正确答案为(D).

11-3 下列说法正确的是( )

(A) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零

(D) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B).

11-4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,

其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P1 、P2 为两圆形回路上的对应点,则( )

(A) BdlBdl,BP1BP2

L1L2(B) BdlBdl,BP1BP2

L1L2(C) BdlBdl,BP1BP2

L1L2(D) BdlBdl,BP1BP2

L1L2 题 11-4 图

分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C).

11-5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A)μr1I/2πr (B) μr1I/2πr (C) μrI/2πr (D) I/2πμrr

分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M=(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B).

11-6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速. 分析 一个电子绕存储环近似以光速运动时,对电流的贡献为ΔI可解出环中的电子数.

解 通过分析结果可得环中的电子数

eNec,因而由I,I/clNIl41010 ec-3

11-7 已知铜的摩尔质量M = g·mol ,密度ρ =8.9 g· cm

-1

,在铜导线里,假设

每一个铜原子贡献出一个自由电子,(1)为了技术上的安全,铜线内最大电流密度

jm6.0Amm2 ,求此时铜线内电子的漂移速率vd ;(2) 在室温下电子热运动的平均

速率是电子漂移速率vd的多少倍?

分析 一个铜原子的质量mM/NA,其中NA 为阿伏伽德罗常数,由铜的密度ρ 可以推算

出铜的原子数密度

nρ/m

根据假设,每个铜原子贡献出一个自由电子,其电荷为e,电流密度jmnevd .从而可解得电子的漂移速率vd.

将电子气视为理想气体,根据气体动理论,电子热运动的平均速率

v8kT πme其中k 为玻耳兹曼常量,me 为电子质量.从而可解得电子的平均速率与漂移速率的关系.

解 (1) 铜导线单位体积的原子数为

nNAρ/M

电流密度为jm 时铜线内电子的漂移速率

jmjmMvd4.46104ms1

neNAe(2) 室温下(T=300 K)电子热运动的平均速率与电子漂移速率之比为

v1vdvd8kT2.42108 πme室温下电子热运动的平均速率远大于电子在恒定电场中的定向漂移速率.电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠加.考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子.实验证明电信号是通过电磁波以光速传递的. 11-8 有两个同轴导体圆柱面,它们的长度均为20 m,内圆柱面的半径为3.0 mm,外圆柱面的半径为9.0 mm.若两圆柱面之间有10 μA电流沿径向流过,求通过半径为6.0 mm的圆柱面上的电流密度.

题 11-8 图

分析 如图所示是同轴柱面的横截面,电流密度j 对中心轴对称分布.根据

恒定电流的连续性,在两个同轴导体之间的任意一个半径为r 的同轴圆柱面上流过的电流I 都相等,因此可得

jI 2πrl解 由分析可知,在半径r =6.0 mm的圆柱面上的电流密度

Ij13.3μAm2

2πrl11-9 如图所示,已知地球北极地磁场磁感强度B 的大小为×10T.如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大? 流向如何?

解 设赤道电流为I,则由教材第11-4节例2 知,圆电流轴线上北极点的磁感强度

-5

B因此赤道上的等效圆电流为

2RR20IR223/20I42R

I42RB1.73109A μ0由于在地球地磁场的N 极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.

题 11-9 图

11-10 如图所示,有两根导线沿半径方向接触铁环的a、b 两点,并与很远处的电源相接.求环心O的磁感强度.

题 11-10 图

分析 根据叠加原理,点O 的磁感强度可视作由ef、be、fa三段直线以及acb、adb两段圆弧电流共同激发.由于电源距环较远,Bef0.而be、fa两段直线的延长线通过点O,由于Idlr0,由毕奥-萨伐尔定律知BbeBfa0.流过圆弧的电流I1 、I2的方向如图所示,两圆弧在点O 激发的磁场分别为

B1μ0I1l1μ0I2l2B, 2224πr4πr其中l1 、l2 分别是圆弧acb、adb的弧长,由于导线电阻R 与弧长l 成正比,而圆弧acb、adb又构成并联电路,故有

I1l1I2l2

将B1、B2叠加可得点O 的磁感强度B.

解 由上述分析可知,点O 的合磁感强度

BB1B2μ0I1l1μ0I2l20 224πr4πr11-11 如图所示,几种载流导线在平面内分布,电流均为I,它们在点O 的磁感强度各为多少?

题 11-11 图

分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度B0解 (a) 长直电流对点O 而言,有IdlrB.

i0,因此它在点O 产生的磁场为零,则点O 处

μ0I 8R总的磁感强度为1/4 圆弧电流所激发,故有

B0B0 的方向垂直纸面向外.

(b) 将载流导线看作圆电流和长直电流,由叠加原理可得

B0B0 的方向垂直纸面向里.

μ0Iμ0I 2R2πR(c) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得

B0B0 的方向垂直纸面向外.

μ0IμIμIμIμI0000 4πR4πR4R2πR4R11-12 载流导线形状如图所示(图中直线部分导线延伸到无穷远),求 点O的磁感强度B.

题 11-12 图

分析 由教材11-4 节例题2的结果不难导出,圆弧载流导线在圆心激发的磁感强度

μ0Iα,其中α为圆弧载流导线所张的圆心角,磁感强度的方向依照右手定则确定;半4πRμI无限长载流导线在圆心点O 激发的磁感强度B0,磁感强度的方向依照右手定则确定.

4πRB点O的磁感强度BO可以视为由圆弧载流导线、半无限长载流导线等激发的磁场在空间点O 的叠加.

解 根据磁场的叠加 在图(a)中,

B0在图(b)中,

μ0IμIμIμIμIi0k0k0i0k 4R4πR4πR4R2πRB0在图(c)中,

μ0IμIμIμI1μIi0i0k01i0k 4πR4R4πR4Rπ4πRB03μ0IμIμIi0j0k 8R4πR4πR 题 11-13 图

11-13 如图(a)所示,载流长直导线的电流为I,试求通过矩形面积的磁通量.

分析 由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS.为此,可在矩形平面上取一矩形面元dS =ldx,如图(b)所示,载流长直导线的磁场穿过该面元的磁通量为

dBdS矩形平面的总磁通量

0I2πxldx

ΦdΦ

解 由上述分析可得矩形平面的总磁通量

d2

d210I2πxldx0Il2πlnd2 d111-14 已知10 mm 裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.

题 11-14 图

分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.

解 围绕轴线取同心圆为环路L,取其绕向与电流成右手螺旋关系,根据安培环路定理,有

BdlB2πrμI

0IIr22πr2,因而 在导线内r <R, IπR2RB在导线外r >R,

μ0Ir 2πR2II,因而

Bμ0I 2πr磁感强度分布曲线如图所示.

11-15 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1) r <R1 ;(2) R1 <r <

R2 ;(3) R2 <r <R3 ;(4) r >R3 .画出B -r 图线.

题 11-15 图

分析 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径,

BdlB2πr,利用安培环路定理BdlμI,可解得各区域的磁感强度.

0解 由上述分析得

r <R1

B12πrμ01πr2 2πR1B1R1 <r <R2

μ0Ir 2πR12B22πrμ0I

B2R2 <r <R3

μ0I 2πrπr2R2B32πrμ0II 22πR3R2μ0IR32r2 B3222πrR3R2r >R3

B42πrμ0II0

B40

磁感强度B(r)的分布曲线如图(b).

11-16 如图所示,N 匝线圈均匀密绕在截面为长方形的中空骨架上.求通入电流I 后,环内外磁场的分布.

题 11-16 图

分析 根据右手螺旋法则,螺线管内磁感强度的方向与螺线管中心轴线构成同心圆,若取半径为r 的圆周为积分环路,由于磁感强度在每一环路上为常量,因而

BdlB2πr

依照安培环路定理Bdlμ0解 依照上述分析,有

I,可以解得螺线管内磁感强度的分布.

B2πrμ0I

r <R1

B12πr0 B10

R2 >r >R1

B22πrμ0NI

B2r >R2

μ0NI 2πrB32πr0 B30

在螺线管内磁感强度B 沿圆周,与电流成右手螺旋.若R2R1R1 和R2 ,则环内的磁场

可以近似视作均匀分布,设螺线环的平均半径R1R2R1,则环内的磁感强度近似为 2Bμ0NI 2πR11-17 电流I 均匀地流过半径为R 的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量.

题 11-17 图

分析 由题11-14 可得导线内部距轴线为r 处的磁感强度

Brμ0Ir 2πR2在剖面上磁感强度分布不均匀,因此,需从磁通量的定义ΦBrdS来求解.沿轴线方

向在剖面上取面元dS =ldr,考虑到面元上各点B 相同,故穿过面元的磁通量dΦ=BdS,通过积分,可得单位长度导线内的磁通量

ΦBdr

S 解 由分析可得单位长度导线内的磁通量

ΦR0μ0Irμ0I dr2πR24π411-18 已知地面上空某处地磁场的磁感强度B0.410T,方向向北.若宇宙射线中

s 的质子,垂直地通过该处.求:(1)洛伦兹力的方向;(2)有一速率v5.010mg

洛伦兹力的大小,并与该质子受到的万有引力相比较.

题 11-18 图

解 (1) 依照FLqvB可知洛伦兹力FL的方向为vB的方向,如图所示. (2) 因vB,质子所受的洛伦兹力

71FLqvB3.21016N

在地球表面质子所受的万有引力

Gmpg1.641026N

因而,有FL/G1.9510,即质子所受的洛伦兹力远大于重力.

11-19 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两

10侧分别安装电极并加以磁场.设血管直径为d=2.0 mm,磁场为B= T,毫伏表测出血管上下两端的电压为UH= mV,血流的流速为多大?

题 11-19 图

分析 血流稳定时,有

qvBqEH

由上式可以解得血流的速度. 解 依照分析

vEHUH0.63m/s BdB11-20 带电粒子在过饱和液体中运动,会留下一串气泡显示出粒子运动的径迹.设在气泡室有一质子垂直于磁场飞过,留下一个半径为3.5 cm 的圆弧径迹,测得磁感强度为 T,求此质子的动量和动能.

解 根据带电粒子回转半径与粒子运动速率的关系有

pmvReB1.121021kgm/s

p2Ek2.35keV

2m11-21 从太阳射来的速度为×10 m/s 的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为 ×10T,此电子回转轨道半径为多大? 若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为 ×10T,其轨道半径又为多少? 解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径

-5

-7

8

R1地磁北极附近的回转半径

mv1.1103m eB1R2mv23m eB211-22 如图(a)所示,一根长直导线载有电流I1 =30 A,矩形回路载有电流I2 =20 A.试计算作用在回路上的合力.已知d =1.0 cm,

b =8.0 cm,l =0.12 m.

题 11-22图

分析 矩形上、下两段导线受安培力F1 和F2 的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零.而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F3 和F4 大小不同,且方向相反,因此线框所受的力为这两个力的合力.

解 由分析可知,线框所受总的安培力F为左、右两边安培力F3 和F4 之矢量和,如图(b)所示,它们的大小分别为

F3F4故合力的大小为

μ0I1I2l 2πdμ0I1I2l

2πdbFF3F4合力的方向朝左,指向直导线.

μ0I1I2lμIIl0121.28103N 2πd2πdb11-23 一直流变电站将电压为500kV的直流电,通过两条截面不计的平行输电线输向远方.已知两输电导线间单位长度的电容为×10

-11

F·m ,若导线间的静电力与安培力正好

-1

抵消.求:(1) 通过输电线的电流;(2) 输送的功率.

分析 当平行输电线中的电流相反时,它们之间存在相互排斥的安培力,其大小可由安培定律确定.若两导线间距离为d,一导线在另一导线位置激发的磁感强度Bμ0I,导线单位2πd长度所受安培力的大小FBBI.将这两条导线看作带等量异号电荷的导体,因两导线间单位长度电容C 和电压U 已知,则单位长度导线所带电荷λ=CU,一导线在另一导线位置所激发的电场强度Eλ,两导线间单位长度所受的静电吸引力FEEλ.依照题意,导2πε0d线间的静电力和安培力正好抵消,即

FBFE0

从中可解得输电线中的电流.

解 (1) 由分析知单位长度导线所受的安培力和静电力分别为

μ0I2FBBI

2πdC2U2 FEEλ2πε0d由FBFE0可得

μ0I2C2U2 2πd2πε0d解得

I(2) 输出功率

CU4.5103A ε0μ0NIU2.25109W

11-24 在氢原子中,设电子以轨道角动量Lh/2π绕质子作圆周运动,其半径为

a05.291011m.求质子所在处的磁感强度.h 为普朗克常量,其值为6.631034Js

分析 根据电子绕核运动的角动量

Lmva0h 2π可求得电子绕核运动的速率v.如认为电子绕核作圆周运动,其等效圆电流

i在圆心处,即质子所在处的磁感强度为

ee T2πa0/vB解 由分析可得,电子绕核运动的速率

μ0i 2a0v其等效圆电流

h

2πma0i该圆电流在圆心处产生的磁感强度

ehe22

2πa0/v4πma0Bμ0iμhe20212.5T 2a08πma011-25 如图[a]所示,一根长直同轴电缆,内、外导体之间充满磁介质,磁介质的相对磁导率为μr(μr <1),导体的磁化可以忽略不计.沿轴向有恒定电流I 通过电缆,内、外导体上电流的方向相反.求:(1) 空间各区域内的磁感强度和磁化强度;*(2) 磁介质表面的磁化电流.

题 11-25 图

分析 电流分布呈轴对称,依照右手定则,磁感线是以电缆对称轴线为中心的一组同心圆.选取任一同心圆为积分路径,应有

HdlH2πr,利用安培环路定理

HdlIf

求出环路内的传导电流,并由BμH,Mμr1H,可求出磁感强度和磁化强度.再由磁化电流的电流面密度与磁化强度的关系求出磁化电流.

解 (1) 取与电缆轴同心的圆为积分路径,根据磁介质中的安培环路定理,有

2HπrIf对r <R1

IIfπR2πr2

1得

H1Ir 2πR12忽略导体的磁化(即导体相对磁导率μr =1),有

M10,B1对R2 >r >R1

μ0Ir 2πR12I得

fI

H2I 2πr填充的磁介质相对磁导率为μr ,有

M2μr1对R3 >r >R2

IμμI,B20r 2πr2πrIfI得

I22πrR 223πR3R2IR32r2 H3222πrR3R2同样忽略导体的磁化,有

μ0IR32r2M30,B3 222πrR3R2对r >R3

I得

fII0

H40,M40,B40

(2) 由IsM2πr,磁介质内、外表面磁化电流的大小为

IsiM2R12πR1μr1I IseM2R22πR2μr1I

对抗磁质(r1),在磁介质内表面(r =R1 ),磁化电流与内导体传导电流方向相反;在磁介质外表面(r =R2 ),磁化电流与外导体传导电流方向相反.顺磁质的情况与抗磁质相反.H(r)和B(r)分布曲线分别如图(b)和(c)所示.

因篇幅问题不能全部显示,请点此查看更多更全内容

Top