第27卷第3期2008年6月VOI27No..3JournalofShandongUniversityofScien~eandTechnologyJun.2008NaturalScience超声波干涉衍射与反射方法测量声速实验的研究、姜琳王岩庆,,(山东科技大学理学院山东青岛266510)摘要较法对仅增加关键词中图分类号:0422.1文献标志码:A文章编号:16723767(2008)03008704—StudyonMeasuringExp,erimentofSounandVeloecityBnaseedoonUltrasonicInterferenceDiffraction。dRflectioMthdsJIANGLin(CollegeoWANGYQingannqingnfScience,SUST,dao,Shadog266510,China)Abstracnt,:Theasnotwarticleinasretroduncestethemeasurements’ofthe,soundvelopacitybyitwemployingtoultrasonicinavetermfeetrenceanddifex—fraperurctioelllyflectioexmhodmofLloydSmirroranddcomresithahecanstatioenarytwhodtan.Thisoimsentoncanpandtheeasurementsofthesounvelocitybutlsdepenheundersdingftheleeofwaves.Kywords:niterferenceintensity;diffractionintensity;waveslvelocityofsound在空气中一,些波动现象不仅可以用可见光与微波(均为电磁波)演示也可以用声波演示,,。在气体中。,声波是在弹性介质中传播的机械纵波因而不会出现偏振现象这是声波与电磁波的,,一个重大区别但声波所产生的几种干涉和衍射效应与电磁波的干涉和衍射效应完全相似、口]。由于超声波具有波长短易于定向发射及抗干扰等优点所以在超声波段进行声速测量是比较方便的,、。本文着重研究用声波的双缝干涉单缝衍射及声波反射的方法测量声速将测量的声速值与理论值进行比,较从而加深对波动学的物理规律和概念的理解,心]。111实验原理.超声波的干涉反射和衍射、与可见光束产生的衍射和干涉相似用超声波同样可实,现干涉和衍射实验也可以测量声波的波长和声速其中最简,,单的是双缝干涉实验¨3]。实验装置如图1所示。对于不同的,a角如果从双缝到,,接收器的波程差是波长的整数倍就会产生相长干涉因而观察到干涉强度的极大值;当程差是半波长的奇数倍时干涉强,图Fig.1u双缝干涉装置图ble度有极小值■■■—■一。因此干涉强度出现极大值与极小值的条件如,。1Thedoslitinterferencedevice式(1)和式(2)所示51期收稿1:20080428作者简介:姜琳(1958),女,山东泰安人教授主要从事大学物理教学与研究,,维普资讯 http://www.cqvip.com
l山东辩麓莉鲁 极大值:学报J自然科学版 dsin a=砝 I一一 (1) 88 第27卷第3期 2008年6月 VoI.27 No.3 Jun.2008 极小值:dsin a= +寺1 \ 厶, (2) 其中: 为零或整数;d为二个缝中心位置的距离;a为接收器 中心转过的角度; 为声波的波长。 另一种称作“洛埃镜”装置,其中反射面(镜)形成波源的 一个虚像,如图2所示。这里仍然可以用接收器来研究由初 一圈2洛埃镜装置图 镜 始波与反射波所形成的干涉图形中的波节图。用相位比较法 进行测量,当反射镜向后移动距离△L—L 一L 时,将出现 极值,即直接入射波和由反射镜反射波的波程相差 ,满足: 一 Fig.2 The Equipment of Loyd’S Mirror (3) 式(3)中:L 和L。分别为接收器输出信号和发射器输入信号 相位差为零时相邻的两个位置;D为发射器和接收器中心部 位的间距。 衍射效应用超声波也可以观察到。采用一个单缝,如图 3所示。将超声波源移至离单缝较远位置,垂直辐射至单缝, 此时来自单缝的一半的辐射与来自另一半的辐射相差半波长 奇数倍时,会产生相消干涉,因此相消干涉条件是: 圈3单衍射装置圈 sin a—f + \ 、 厶, 发 (4) Fig.3 The Equipment of single-slit diffraction 式(4)中:n一0,--_1,±2,…;b为单缝缝宽;4-a为接收器中心位置转过的角度。 1.2共振干涉法 发射源发出的一定频率的声波经过空气传播到达接收器。若接收面与发射面严格平行,入射波与反射 波相干形成驻波,反射面处为驻波的波节。改变接收器与发射器之间的距离,在某些距离上形成稳定的驻波 共振现象。距离为半波长的整数倍时驻波的幅度达到极大,此时接收面上的声压波腹相应达到极大值。在 移动发射器的过程中,相临两次到达极大值时发射器的移动距离为半波长,利用公式 = 计算声速。 1.3相位比较法 将发射器的信号输入到示波器的x轴,同时将接收器收到的信号输入到示波器的y轴。设输入x轴、 y轴的入射波的振动方程分别为z—A cos(oJt-+- -),Y—A cos(a ̄t+ z)。X和y振动合成轨迹为椭圆,椭 圆长短轴的方向由相位差 一( 。一 -)决定。若 =0,则轨迹为一条直线;若 =兀/2,则轨迹为以坐标轴为 主轴的椭圆;若 一兀则轨迹也为一条直线;若 —3丌/2,则轨迹为以坐标轴为主轴的椭圆:利用此关系可以 测量声波的波长和声速。 2实验装置与实验内容 实验装置包括超声接收器、数显游标卡尺、转轴带 圆游标的转动导轨、支架底板等。实验仪器还包括低 频信号发生器(提供发射器正弦波信号)和双踪示波器 等,如图4所示。 1)声音在空气中传播速度测量 调整测试系统的谐振频率,并在此谐振频率处用 共振干涉法和相位比较法测声速。 2)声波的双缝干涉 为减少每个单缝也可以衍射带来的复杂性,每个 图4数显声速测量装置结构图 Fig.4 The digital display device of sound velocity measurement 维普资讯 http://www.cqvip.com
姜琳等 超声波干涉、衍射与反射方法测量声速实验的研究 Journal of Shandong University of Science and Technology } 豢喜 。砻 嚣露;鞭 = 誉辨霉霉 1 一 一 表1 双缝干涉测量数据表 Tab.1 The data of double-slit interference measurement 缝宽要小于1个波长,依次测量出主极大和极小值的位置,并 与式(1)、式(2)预期值进行比较。 3)洛埃镜实验 在两个相互成一定角度波源和接收器之间与入射波成约 20。~30。角放一片反射板,如图2所示。观察由初始波和反 射波在接收器处形成的干涉图像的波节。随着反射板向后移 动,可以观察到波峰和波节交替出现。在实验底板上放一张 作图纸,利用相位比较法测量波长及声速。 4)超声波的单缝衍射 将超声发射器从底板上卸下,沿接收器相反方向移动,并 固定放置,使发射器中心与单缝中心间距远大于单缝宽度。 近似满足夫琅和费衍射条件。采用缝宽为25.0 mm的单缝 进行实验,测出第一个极小值位置,并与式(4)的预期值进行 比较。 3实验数据和结果 1)双缝干涉实验 表2洛埃镜反射测量数据表 Tab,2 The data of Loyd’s Mirror reflectancet measurement 丁一29.1℃,天晴。理论预测值 T一348.7 m/s。 双缝中心的间距 =2.55 mm,每个缝宽a一3.0 mm。 干涉强度随接收器转角变化的测量数据如表1所示。 极小值出现角度为9.7。,极大值出现角度为19.5。,将数 据分别代入式(1)和式(2)得 一8.59 mm, 一8.51 mm。 由频率f一40 255 Hz,可知声速为 一342.65 m/s; 次数 最大振幅/(Li/cm) 。一345.90 m/s。用第一个极小值与其相邻的极大值计算得 到的实验值与理论预期值比较,误差分别为1.8 ,0.8 。 2)洛埃镜反射实验 丁一16.0℃,天晴。理论预测值 T一341.1 m/s。 在纸上取零点i一0,L。一0,并使D一22.50 cm,得到数 据,见表2。 表3 单缝衍射测量数据表 Tab.3 The data of single-slit diffraction measurement 一实验结果为 一8.45 mm,由频率f一40 100 Hz,得出 338.8 m/s,实验值与理论预测值的误差为0.7 。 3)单缝衍射实验 丁一28.3℃,天晴。理论预测值 T一348.24 m/s。 单缝缝宽6—25.0 mm。衍射强度随接收器转角的测量 数据见表3。 第一个极小值(,2—0)出现角度为19.3。。 —bsina: 8.59 mm,由频率_厂一40 255 Hz可知声速为 一345.9 m/S。 实验值与理论值的误差为0.69 。 由于仪器导轨的,实验过程中旋转角度不能超过 25。。 4)共振干涉法实验 丁一28.6。C,天晴。在干燥空气条件下,声速的理论值为 √1+ ■— 一 (5) 维普资讯 http://www.cqvip.com
_ I山东辩 学 自然科学版 1 2 3 4 5 6 7 8 9 K 第220087年6卷第3月 期 VJuOnI.27 NO.3 ,2008 式(5)中: 。为T---0℃时的声速, 。=331.5 rn/s。将温度代入式(5)得该温度时的声速VT一348.42 m/s。 频率f=40 255 Hz,实验结果 一349.74 m/s,实验值与理论预测值的误差为0.38%。 5)相位比较法实验 T:28.0℃,天晴。将温度代入式(5)得理论预测值:73r一348.08 m/s。 表4共振干涉法测量数据表 Tab.4 The data of resonance interference method measurement 表5相位比较法测量数据表 Tab.5 The data of phase comparison method measurement 次数 位置/cm 4.2O 8.22 12.73 17.21 21.66 25.79 29.97 34.36 次数 u ¨ M 位置/cm 47.16 " 次数 位置/cm 4.42 8.78 13.15 17.56 次数 位置/cm 48.O3 52.32 56.43 60.74 65.19 51.80 56.35 60.65 64.93 69.57 21.87 26.21 3O.59 34.95 39.40 43.75 69.22 73.38 77.84 82.26 86.84 73.78 78.04 82.48 86.88 1 2 3 4 5 6 7 8 9 K 38.49 43.06 频率f=40.255 Hz,实验结果 一347.46 rn/s,实验值与理论预测值的误差为0.18 9/6。 6)误差分析和减小误差的方法 声波能量损失影响[5]:超声波在介质传播时会发生能量损失,使反射波和入射波振幅不等。在多种因素 的影响下发射声波会产生多次反射叠加,两超声换能器之间形成的不是严格的驻波。 位置距离影响:在实验中有时会观察到示波器上声压极大值幅度随换能器之间的距离增大呈几何衰减, 此为球面波的特征。 u ¨ M ” ∞ 在保证测量范围处于共振状态的前提下,谐振频率在接近波节位置测量的起始处测定,可使谐振频率变 化减小,减小系统误差。增加波节位置的测定数目,可以减少声速测量值的随机误差。在设备上,使用大功 率换能器和电子滤波放大器电路会使误差减小。 4结束语 经过大量实验,实验结果与理论值的百分差普遍小于2 ,物理实验中普遍采用共振干涉法和相位比较 法测量声速,可以看出共振干涉法有助于认识驻波声压变化规律,相位比较法能直观地看出驻波相位的变化 特点。利用声波的干涉、反射及衍射测量声速,不仅扩展了实验方法,而且加深了学生对波动学规律及本质 的认识和理解。 参考文献: 1-13沈文华,陆申龙.基础物理实验[M].北京:高等教育出版社,2003:112—115. -12-1吕斯骅,短家氏.基础物理实验[M].北京:北京大学出版社,2002:187—190. [33王廷兴,郭山河,王廷兴,等.大学物理实验(上)[M].北京;高等教育出版社,2003:165—167. [4]朱献松,王宏志,宋君强.能量损耗对超声声速测量的影响[J].大学物理,2004,23(3):35—36. ZHU Xian-song,WANG Hong-zhi,SONG Jun-qiang.The influence of energy attenuation on supersonic velocity measure— ment[J]。College Physics,2004,23(3):35—36. [5]艾宝勤,马晓舂.关于空气中声速测量误差的讨 ̄ ̄1-J3.威阳师范学院学报,2006(4):81—83. AI Bao-qin,MA Xiao—chun.A discussion of error in measuring the velocity of sound in the atmosphere ̄J-].Journal of Xian— yang Normal University,2006(4):82—83.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- xiaozhentang.com 版权所有 湘ICP备2023022495号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务