1、三角形的概念
由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形中的主要线段
(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
3、三角形的稳定性
三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。
4、三角形的特性与表示 三角形有下面三个特性: (1)三角形有三条线段
(2)三条线段不在同一直线上 三角形是封闭图形 (3)首尾顺次相接
三角形用符号“”表示,顶点是A、B、C的三角形记作“ABC”,读作“三角形ABC”。 5、三角形的分类
三角形按边的关系分类如下: 不等边三角形
三角形 底和腰不相等的等腰三角形 等腰三角形
等边三角形 三角形按角的关系分类如下:
直角三角形(有一个角为直角的三角形)
三角形 锐角三角形(三个角都是锐角的三角形) 斜三角形
钝角三角形(有一个角为钝角的三角形)
把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。
6、三角形的三边关系定理及推论
(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
1
(2)三角形三边关系定理及推论的作用: ①判断三条已知线段能否组成三角形 ②当已知两边时,可确定第三边的范围。 ③证明线段不等关系。 7、三角形的内角和定理及推论
三角形的内角和定理:三角形三个内角和等于180°。 推论:
①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。 ③三角形的一个外角大于任何一个和它不相邻的内角。 注:在同一个三角形中:①等角对等边;等边对等角;
②大角对大边;大边对大角。 ③三角形的面积=
1×底×高 2多边形知识要点梳理
定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。 凸多边形
多边形 分类1: 凹多边形
正多边形:各边相等,各角也相等的多边形叫做正多边形。
分类2:
非正多边形: 1、n边形的内角和等于180°(n-2)。
1·n(n-3) 2多边形的定理 2、任意凸形多边形的外角和等于360°。 3、n边形的对角线条数等于知识点一:多边形及有关概念
1、 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. (1)多边形的一些要素:
边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点.
内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。 (2)在定义中应注意:
①一些线段(多边形的边数是大于等于3的正整数);
2
②首尾顺次相连,二者缺一不可;
③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间多边形.
2、多边形的分类:
(1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形. 本章所讲的多边形都是指凸多边形.
(2)多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形. 知识点二:正多边形
各个角都相等、各个边都相等的多边形叫做正多边形。如正三角形、正方形、正五边形等。
正三角形 正方形 正五边形 正六边形 正十二边形
要点诠释:
各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形
知识点三:多边形的对角线
多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD为四边形ABCD的一条对角线。 要点诠释:
(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。 (2)n边形共有
n(n3)条对角线。 2证明:过一个顶点有n-3条对角线(n≥3的正整数), ∵共有n个顶点,
∴共有n(n-3)条对角线,但过两个不相邻顶点的对角线重复了一次, ∴凸n边形,共有
n(n3)条对角线。 2(n3)知识点四:多边形的内角和公式:n边形的内角和为(n2)180.
3
要点诠释:
(1)注意:以上各推导方法体现出将多边形问题转化为三角形问题来解决的基础思想。 (2)内角和定理的应用:
①已知多边形的边数,求其内角和; ②已知多边形内角和,求其边数。 知识点五:多边形的外角和公式 1.公式:多边形的外角和等于360°.
2.多边形外角和公式的证明:多边形的每个内角和与它相邻的外角都是邻补角,所以n边形的
-n2)180360. 内角和加外角和为n180,外角和等于n180(注意:n边形的外角和恒等于360°,它与边数的多少无关。 要点诠释:
(1)外角和公式的应用: ①已知外角度数,求正多边形边数; ②已知正多边形边数,求外角度数. (2)多边形的边数与内角和、外角和的关系:
①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每
增加1条边,内角和增加180°。
②多边形的外角和等于360°,与边数的多少无关。 知识点六:镶嵌的概念和特征
1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)。这里的多边形可以形状相同,也可以形状不相同。
2、实现镶嵌的条件:拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边。
3、常见的一些正多边形的镶嵌问题: 角之和为360°。
(2)只用一种正多边形镶嵌地面
(1)用正多边形实现镶嵌的条件:①边长相等;②顶点公用;③在一个顶点处各正多边形的内
对于给定的某种正多边形,怎样判断它能否拼成一个平面图形,且不留一点空隙?
4
解决问题的关键在于正多边形的内角特点。当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形。因而,用相同的正多边形地砖铺地面,只有正三角形、正方形、正六边形的地砖可以用。
注意:任意四边形的内角和都等于360°。所以用一批形状、大小完全相同但不规则的四边形地砖也可以铺成无空隙的地板,用任意相同的三角形也可以铺满地面。 (3)用两种或两种以上的正多边形镶嵌地面
用两种或两种以上边长相等的正多边形组合成平面图形,关键是相关正多边形“交接处各角之和能否拼成一个周角”的问题。例如,用正三角形与正方形、正三角形与正六边形、正三角形与正十二边形、正四边形与正八边形都可以作平面镶嵌,见下图:
又如,用一个正三角形、两个正方形、一个正六边形结合在一起恰好能够铺满地面,因为
它们的交接处各角之和恰好为一个周角360°。 规律方法指导
1.内角和与边数成正比:边数增加,内角和增加;边数减少,内角和减少. 每增加一条边,内角的和就增加180°(反过来也成立),且多边形的内角和必须是180°的整数倍. 2.多边形外角和恒等于360°,与边数的多少无关.
3.多边形最多有三个内角为锐角,最少没有锐角(如矩形);多边形的外角中最多有三个钝角,最少没有钝角.
4.在运用多边形的内角和公式与外角的性质求值时,常与方程思想相结合,运用方程思想是解决本节问题的常用方法.
5.在解决多边形的内角和问题时,通常转化为与三角形相关的角来解决. 三角形是一种基本图形,是研究复杂图形的基础,同时注意转化思想在数学中的应用. 经典例题透析
类型一:多边形内角和及外角和定理应用
1.一个多边形的内角和等于它的外角和的5倍,它是几边形?
总结升华:本题是多边形的内角和定理和外角和定理的综合运用. 只要设出边数,根据条件列出关于的方程,求出n的值即可,这是一种常用的解题思路. 举一反三:
【变式1】若一个多边形的内角和与外角和的总度数为1800°,求这个多边形的边数.
【变式2】一个多边形除了一个内角外,其余各内角和为2750°,求这个多边形的内角和是多少?
【变式3】一个多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数。 类型二:多边形对角线公式的运用
【变式1】一个多边形共有20条对角线,则多边形的边数是( ). A.6 B.7 C.8 D.9
5
【变式2】一个十二边形有几条对角线。
总结升华:对于一个n边形的对角线的条数,我们可以总结出规律
n(n3)条,牢记这个公2式,以后只要用相应的n的值代入即可求出对角线的条数,要记住这个公式只有在理解的基础之上才能记得牢。
类型三:可转化为多边形内角和问题
【变式1】如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________.
【变式2】如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数。
类型四:实际应用题
4.如图,一辆小汽车从P市出发,先到B市,再到C市,再到A市,最后返回P市, 这辆小汽车共转了多少度角?
思路点拨:根据多边形的外角和定理解决.
类型五:镶嵌问题
5.分别画出用相同边长的下列正多边形组合铺满地面的设计图。
(1)正方形和正八边形;(2)正三角形和正十二边形;(3)正三角形、正方形和正六边形。
点拨:只要在拼接处各多边形的内角的和能构成一个周角,那么这些多边形就能作平面镶嵌。 解析:正三角形、正方形、正六边形、正八边形、正十二边形的每一个内角分别是
60°、90°、120°、135°、150°。
(1)因为90+2×135=360,所以一个顶点处有1个正方形、2个正八边形,如图(1)所示。 (2)因为60+2×150=360,所以一个顶点处有1个正三角形、2个正十二边形,如图(2)所示。 (3)因为60+2×90+120=360,所以一个顶点处有1个正三角形、1个正六边形和2个正方形, 如图(3)所示。
6
总结升华:用两种以上边长相等的正多边形组合成平面图形,实质上是相关正多边形“交接处各角之和能否拼成一个周角”的问题。 【变式1】
分别用形状、大小完全相同的①三角形木板;②四边形木板;③正五边形木板;④正六边形木板作平面镶嵌,其中不能镶嵌成地板的是( )
A、① B、② C、③ D、④
解析:用同一种多边形木板铺地面,只有正三角形、四边形、正六边形的木板可以用,不
能用正五边形木板. 【变式2】
用三块正多边形的木板铺地,拼在一起并相交于一点的各边完全吻合,其中两块木板的边数都是8,则第三块木板的边数应是( )
A、4 B、5 C、6 D、8
【答案】 A (提示:先算出正八边形一个内角的度数,再乘以2,然后用360°减去刚才得到的
积,便得到第三块木板一个内角的度数,进而得到第三块木板的边数)
练习
1.多边形的一个内角的外角与其余内角的和为600°,求这个多边形的边数.
2.n边形的内角和与外角和互比为13:2,求n.
第十二章 一、全等三角形:
1、定义:能够完全重合的两个三角形叫做全等三角形。
变换方式:一个三角形经过平移、翻折、旋转可以得到它的全等形。
全等变换:只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。
7
全等三角形知识要点归纳
全等变换包括一下三种:
(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。 (2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。
(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。 2、全等三角形的性质:
①全等三角形的对应边相等、对应角相等。 ②全等三角形的周长相等、面积相等。
3、全等三角形的判定:
边边边:三边对应相等的两个三角形全等 (可简写成“SSS”) 边角边:两边和它们的夹角对应相等两个三角形全等 (可简写成“SAS”) 角边角:两角和它们的夹边对应相等的两个三角形全等 (可简写成“ASA”) 角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”) 斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等 (可简写成 “HL” ) ①、.边边边:三边对应相等的两个三角形全等。(SSS) 几何语言: 如图所示:
②、.边角边:两边和它们的夹角对应相等的两个三角形全等。(SAS) 几何语言: 如图所示:
③、.角边角:两角和它们的夹边对应相等的两个三角形全等。(ASA) 几何语言: 如图所示:
8
④、.角角边:两角和其中一个角的对边对应相等的两个三角形全等。(AAS) 几何语言: 如图所示:
⑤、.斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等。(H L) 几何语言: 如图所示:
4、证明两个三角形全等的基本思路:
二、角的平分线:
9
第十三章 轴对称知识要点归纳
一、轴对称图形:
1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。 2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这
条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点 3、轴对称图形与两个图形关于一条直线成轴对称有什么区别与联系? 区别 两个图形关于一条直线成轴对称 ① 是指两个图形的位置关系 ② 对两个图形而言 轴对称图形 ①指一个图形的性质 ②对一个具有特殊形状的图形而言 联系 ① 都有“沿某直线翻折”和“图形重合” ② 如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形。反过来,把轴对称图形中位于对称轴两旁的部分看作两个图形,那么它们就是两个图形关于一条直线成轴对称。 4.轴对称的性质 ①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 ③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。 二、线段的垂直平分线 ( 重点 )
1. 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。 2.性质:线段垂直平分线上的点与这条线段
P的两个端点的距离相等 符号语言: ∵PC⊥AB AC=BC
ADB10 ∴PA=PB
3.判定:①与一条线段两个端点距离相等的点,在线段的垂直平分线上。
符号语言:∵PA=PB
∴点P在线段AB的垂直平分线上
②经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线
符号语言:∵PD⊥AB,AD=BD
∴PD垂直平分线段AB
4、三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等 三、用坐标表示轴对称:
在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.
关于y轴对称的点横坐标互为相反数,纵坐标相等.
注意:关于哪个轴对称,哪个坐标就不变,另一个坐标互为相反数.
点(x, y)关于x轴对称的点的坐标为(x, -y). 点(x, y)关于y轴对称的点的坐标为(-x , y). 点(x, y)关于原点对称的点的坐标为(-x , -y).
四、等腰三角形:1.等腰三角形的性质①.等腰三角形的两个底角相等。(等边对等角)
符号语言:∵AB=AC ∴∠B=∠C
②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。简记为:三线合一. 符号语言:
∵AB=AC,∠BAD=∠CAD 或∵AB=AC, BD=CD 或 ∵AB=AC, AD⊥BC ∴BD=CD,AD⊥BC ∴,AD⊥BC,∠BAD=∠CAD ∴BD=CD, ∠BAD=∠CAD
2、等腰三角形的判定:
如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
11
符号语言:∵∠B=∠C
∴AB=AC
即△ABC是等腰三角形
五、等边三角形: 1.等边三角形的性质:
①等边三角形的三个角都相等,并且每一个角都等于60° ABCA符号语言:∵△ABC是等边三角形
∴∠A=∠B=∠C=60°
②等边三角形的三条边都相等。 符号语言:∵△ABC是等边三角形
∴AB=BC=AC 2、等边三角形的判定:
①三个角都相等的三角形是等边三角形。
符号语言:∵∠A=∠B=∠C
∴△ABC是等边三角形
②有一个角是60°的等腰三角形是等边三角形。
符号语言:∵∠A=∠B,∠A=60°
∴△ABC是等边三角形
③三条边都相等的三角形是等边三角形。 符号语言:∵AB=AC=BC
∴△ABC是等边三角形
3.在直角三角形中,如果一个锐角等于300, 那么它所对的直角边等于斜边的一半。 符号语言: ∵∠C=90°,∠B=30°
∴AC=
12 AB 或者AB=2AC 12
BCACB
因篇幅问题不能全部显示,请点此查看更多更全内容