有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具
有一个子空间拓扑。
基本运算法则编辑 加法运算
1、同号两数相加,取与加数相同的符号,并把绝对值相加。 2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两数相加得0。 4、一个数同0相加仍得这个数。 5、互为相反数的两个数,可以先相加。 6、符号相同的数可以先相加。 7、分母相同的数可以先相加。
8、几个数相加能得整数的可以先相加。 减法运算
减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。 [1]
乘法运算
1、同号得正,异号得负,并把绝对值相乘。 2、任何数与零相乘,都得零。
3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正。
4、几个数相乘,有一个因数为零,积就为零。
5、几个不等于零的数相乘,首先确定积的符号,然后后把绝对值相乘。
除法运算
1、除以一个不等于零的数,等于乘这个数的倒数。
2、两数相除,同号得正,异号得负,并把绝对值相除。零除以任意一个不等于零的数,都得零。
注意:
零不能做除数和分母。
有理数的除法与乘法是互逆运算。
在做除法运算时,根据同号得正,异号得负的法则先确定符号,再把绝对值相除。若在算式中带有带分数,一般先化成假分数进行计算。若不能整除,则除法运算都转化为乘法运算