PartiallysupportedbyEUwithintheFET–GlobalComputinginitiative,projectDARTST-2001-33477,andbyMURSTCofin’01projectCOMETA.Thefundingbodiesarenotresponsibleforanyusethatmightbemadeoftheresultspresentedhere.2
Partiallysupportedbygrant1630“Representationofproofswithapplications,classi-ficationofstructuresandinfinitecombinatorics”(oftheMinistryofScience,Technology,andDevelopmentofSerbia).
1
34
byusingthefinitarylogicaldescriptionofthemodelsobtainedbydefiningsuitableintersectiontypeassignmentsystems.
Inthispaperwefocusonsixcomputationalpropertiesoflambdatermsandcorrespondingsixsetsoflambdaterms:thesetofnormalizing,headnormalizing,weakheadnormalizinglambdaterms,andthosecorrespondingtothepersistentversionsofsuchnotions.WebuildaninverselambdamodelD∞,accordingtoScott[23],whichcompletelycharacterizeseachofthesixsetsoftermsmentioned.Moreprecisely,foreachoneoftheabovesixsetsoftermsthereisacorrespondingelementinthemodelsuchthatatermbelongstothesetifandonlyifitsinterpretation(inasuitableenvironment)isbiggerthanorequaltothatelement.ThisisprovedbyusingthefinitarylogicaldescriptionofthemodelD∞obtainedbydefininganintersectiontypeassign-mentsysteminthefollowingway.First,weconstructasetToftypeswhicharegeneratedfromatomictypescorrespondingtotheelementsofD0,bythefunctiontypeconstructorandtheintersectiontypeconstructor.Thenwede-fineasetFoffiltersonthesetT.AccordingtoCoppoetal.[7]andAlessi[2],thesetFoffiltersandtheinversemodelD∞areisomorphicasω-algebraiclattices.ThisisomorphismfallsinthegeneralframeworkofStonedualities(Johnstone[14]).ThisframeworklaterreceivedacategoricallyprincipledexplanationbyAbramskyinthebroaderperspectiveof“domaintheoryinlogicalform”[1].InKegelman[15]onecanfindagreattourthroughvariousStonedualitiesinthecategoryofcontinuousdomains.TheinterestoftheaboveisomorphismliesinthefactthattheinterpretationsoflambdatermsinD∞areisomorphicwiththefiltersoftypesonecanderiveinthistypeas-signmentsystem(Alessi[2]).Thisgivesadesiredfinitarylogicaldescriptionofthemodel.Therefore,anequivalentoftheprimarycompletecharacteri-zationcanbestated:atermbelongstooneofthesixsetsmentionedifandonlyifithasacertaintype(inasuitablecontext)inthetypeassignmentsystemobtained.
SomeideasofthisresearchwerepresentedattheInternationalWorkshoponRewritinginProofandComputation(RPC’01,TohokuUniversity25-27/10/2001,Sendai,Japan)[8].Alongthelinesoftheseideasitisworthinvestigatingthebehaviourofsomeothercomputationalpropertiessuchasvariousclosabilities,i.e.reductionstodifferentkindsofclosedterms,whichisconsideredinDezaniandGhilezan[9].
InSectionthemodelD∞characterizingallsixcomputationalpropertiesoftermsisbuilt.ThetypeassignmentsystemisdefinedinSectionandtheproofsareshortlydiscussed.
35
2.Themodel
Weusestandardnotationsforlambdatermsandbetareductions.Definition1.(ThesetΛoflambdaterms)
ThesetΛof(type-free)lambdatermsisdefinedbythefollowingabstractsyntax.
Λvar
::=::=
var|(ΛΛ)|(λvar.Λ)x|var′
Weusex,y,z,...,x1,...forarbitrarytermvariablesandM,N,P,...,M1,...forarbitraryterms.Inwritingtermsweassumethestandardcon-ventionsonparenthesesanddots[5].FV(M)denotesthesetoffreevariablesofatermM.ByM[x:=N]wedenotethetermobtainedbysubstitutingthetermNforallthefreeoccurrencesofthevariablexinM,takingintoaccountthatfreevariablesofNremainfreeinthetermobtained.
Theaxiomofβ-reductionis(λx.M)N→βM[x:=N].Atermoftheform(λx.M)Niscalledβ-redex.Thetransitivereflexiveclosureof→βisdenotedby→→β.Atermisanormalformifitdoesnotcontainβ-redexes.
Weconsiderherethefollowingcomputationalbehavioursoflambdaterms.Definition2.(Normalizationproperties)
i)Mhasanormalform,M∈N,ifMreducestoanormalform;ii)Mhasaheadnormalform,M∈HN,ifMreducestoatermofthe
→→→
formλx.yM(wherepossiblyyappearsinx);iii)Mhasaweakheadnormalform,M∈WN,ifMreducestoanab-stractionortoatermstartingwithafreevariable.
Foreachoftheaboveproperties,weshallconsideralsothecorrespondingpersistentversion(seeDefinition3).PersistentlynormalizingtermshavebeenintroducedinB¨ohmandDezani[6].
Definition3.(Persistentnormalizationproperties)
i)AtermMispersistentlynormalizing,M∈PN,ifMN∈Nforall
→
termsNinN.
→
36
ii)AtermMispersistentlyheadnormalizing,M∈PHN,ifMN∈HN
→
foralltermsN.iii)AtermMispersistentlyweaknormalizing,M∈PWN,ifMN∈
→
WNforalltermsN.Example1.LetI≡λx.x,∆≡λx.xx,Y≡λf.(λx.f(xx))(λx.f(xx)),K≡λxy.x.
i)λx.x∆∆∈N,butλx.x∆∆∈/PWN,since(λx.x∆∆)I→→β∆∆∈/WN.ii)λx.y(∆∆)∈PHN,butλx.y(∆∆)∈/N.
iii)λx.x(∆∆)∈HN,butλx.x(∆∆)∈/Nandλx.x(∆∆)∈/PWN,since
(λx.x(∆∆))∆→β∆(∆∆)∈/WN.iv)YK∈PWN,butYK∈/HN.
v)λx.∆∆∈WN,butλx.∆∆∈/HNandλx.∆∆∈/PWN,since(λx.∆∆)M→→β∆∆∈/WN.
→
→
ΛWN
37
Nootherinclusionholdsbetweentheabovesets.
Ourgoalistobuildaninverselimitlambdamodel,Scott[23],whichsatisfiesthefollowingcondition:
foreachoneoftheabovesixsetsoftermsthereisacorrespondingelementinthemodelsuchthatatermbelongstothesetiffitsinterpretation(inasuitableenvironment)isbiggerthanorequaltothatelement.
Weneedthereforetodiscussthefunctionalbehavioursofthetermsbe-longingtotheseclasses,inparticularwithrespecttothestepfunctions,whereasusualastepfunctiona⇒bisdefinedby
λd.ifa⊑dthenbelse⊥.
Aweakheadnormalizingtermeitherreducestoanabstractionortoanapplicationofavariableto(possiblyzero)terms:inbothcases(inasuitableenvironment)itbehavesatleastaswellasthestepfunction⊥⇒⊥.Sowecanchoosetherepresentativeofthestepfunction⊥⇒⊥astheelementwhichcorrespondstoWN.Weneedtoconsideramodelinwhichthisstepfunctionisnotthebottomofthewholedomain,i.e.asolutionofthedomainequationD=[D→D]⊥,whereasusual[D→D]isthedomainofcontinuousfunctionsfromDtoDand⊥istheliftingoperator.
Apersistentlyweaknormalizingtermappliedtoanynumberofarbitrarytermsgivesaweakheadnormalizingterm:i.e.itbehavesatleastaswellasthestepfunction⊥⇒...⇒⊥⇒⊥forallvaluesofn.Therefore,the
n
elementrepresentingn∈IN(⊥⇒...⇒⊥⇒⊥)isagoodcandidateforthe
n
correspondencewiththesetPWN.
Aheadnormalizingtermwhenappliedtoapersistentlyheadnormaliz-ingtermreducestoaheadnormalizingterm:initsturnapersistentlyheadnormalizingtermappliedtoanarbitrarytermgivesapersistentlyheadnor-ˆaretwoelementsofD0correspondingmalizingterm.Therefore,ifhandh
respectivelytothesetsHNandPHN,theyrepresentthestepfunctionsˆ⇒hand⊥⇒ˆhh.
Anormalizingtermisalsoaheadnormalizingtermandthereforeitbe-ˆ⇒h.Apersistentlynormalizinghavesatleastaswellthestepfunctionh
termisalsoapersistentlyheadnormalizingtermandthereforeitbehavesatleastaswellthestepfunction⊥⇒ˆh.Apersistentlynormalizingtermap-pliedtoanormalizingtermgivesapersistentlynormalizingterm.Moreover,anormalizingtermappliedtoapersistentlynormalizingtermisinturnanormalizingterm.
38
ˆaretwoelementsofD0correspondingrespectivelyTherefore,ifnandn
ˆ⇒h)⊔(ˆtothesetsNandPN,theyrepresentthefunctions(hn⇒n)and
ˆ)⊔(n⇒ˆ(⊥⇒hn).
Tosumupwedefineourmodelasfollows.Definition4.LetD∞betheinverselimitmodelobtainedbytakingasD0thelatticeofFig.2,asD1thelattice[D0→D0]⊥,andbydefiningtheembeddingi0:D0→[D0→D0]⊥asfollows:
ˆ)⊔(n⇒ˆˆ⇒h)⊔(ˆi0(ˆn)=(⊥⇒hn),i0(n)=(hn⇒n),
ˆ)=⊥⇒hˆ,i0(h)=hˆ⇒h,i0(⊥)=⊥.i0(h
ˆFn
FFFFFˆnhFFFFFF
h
39
∞
⊒v)M∈PWNiff[M]Dρˆn
n∈IN(⊥⇒...⇒⊥⇒⊥);
n
∞
vi)M∈WNiff[M]D⊒⊥⇒⊥.ρˆn
TheproofofthistheoremisdonebymeansofafinitarylogicaldescriptionofD∞obtainedbydefininganintersectiontypeassignmentsysteminSec-tion3.
3.Thetypeassignmentsystem
Stonedualitiesallowtodescribespecialclassesoftopologicalspacesbymeansof(possiblyfinitary)partialorders.Typically,thesepartialordersaregivenbythetopology,abasisforitorasubbasisforit.TheseminalresultisthedualitybetweenthecategoriesofStonespacesandofBooleanalgebras(seeJohnstone[14]).Otherveryimportantexamplesarethedescriptionsofω-algebraiccompletelatticesasintersectiontypetheoriesinCoppoetal.[7],ScottdomainsasinformationsystemsinScott[25],andSFPdomainsaspre-localesinAbramsky[1].ItisworthwhiletomentionalsoMartin-L¨of’sdomaininterpretationofintuitionistictypetheoryinMartin-L¨of[18].
AsstatedfirstinCoppoetal.[7]andprovedinAlessi[2],wecandescribeaninverselimitmodelD∞bytaking:
•thetypesfreelygeneratedbyclosing(asetofatomictypescorrespond-ingto)theelementsofD0underthefunctiontypeconstructor→andtheintersectiontypeconstructor∩;•thepreorderbetweentypesinducedbyreversingtheorderinD0andbyencodingtheinitialembedding,accordingtothecorrespondence:
functiontypeconstructorintersectiontypeconstructor
→→
stepfunction
join.
ForthemodelD∞discussedintheprevioussectionweobtainthefollow-ingdefinitions.
40
Definition5.(ThesetToftypes)ThesetToftypesisdefinedasfollows.
T
::=
ν|νˆ|µ|µˆ|Ω|T→T|T∩T
Typeswillbedenotedbyσ,τ,...,σ1,....Whenwritingtypesweshall
usethefollowingconvention:theconstructor∩takesprecedenceovertheconstructor→anditassociatestotheright.
Now,wegivethecorrespondencebetweentypesandelementsofD∞(asusualweidentifyelementsofDnwiththeirprojectionsinD∞).
Definition6.(Themappingm)
Themappingm:T→D∞isdefinedasfollows.
ˆm(µ)=hm(ν)=nm(ˆν)=n
m(σ→τ)=m(σ)⇒m(τ)
ˆm(Ω)=⊥m(ˆµ)=h
m(σ∩τ)=m(σ)⊔m(τ).
Definition7.(PreorderonT)
Therelation≤isdefinedonTbythefollowingaxiomsandrules:(ˆνν)(νµ)(Ω)(ˆν→)(ˆµ→)(refl)(idem)(incl)
νˆ≤ν(ˆνµˆ)νˆ≤µˆν≤µ(ˆµµ)µˆ≤µσ≤Ω(Ω→)σ→Ω≤Ω→Ωνˆ∼(Ω→µˆ)∩(ν→νˆ)(ν→)ν∼(ˆµ→µ)∩(ˆν→ν)µˆ∼Ω→µˆ(µ→)µ∼µˆ→µσ≤σ(mon)σ≤σ′,τ≤τ′⇒σ∩τ≤σ′∩τ′σ≤σ∩σ(trans)σ≤τ,τ≤ρ⇒σ≤ρσ∩τ≤σ,σ∩τ≤τ(amon)σ≤σ′,τ≤τ′⇒σ′→τ≤σ→τ′
(arint)(σ→τ)∩(σ→ζ)≤σ→τ∩ζ
whereσ∼τisshortforσ≤τandτ≤σ.
ThefirstfouraxiomscorrespondtothepartialorderinD0.Axiom(Ω)saysthatΩisthetoptype,andthereforegivesforΩboththepartialorderinD0andtheembeddinginD1.Theaxioms(ˆν→),(ν→),(ˆµ→),(µ→)encodetheinitialembeddingoftheconstantsdifferentfromΩinD1.Theremainingaxiomsarestandardpropertiesofjoinsandstepfunctions.
Webuildfiltersonthesetoftypes:theywillcorrespondtotheelementsofD∞.
41
Definition8.(ThesetFoffilters)i)AfilterisasetX⊆Tsuchthat:
(a)Ω∈X;
(b)ifσ≤τandσ∈X,thenτ∈X;(c)ifσ,τ∈X,thenσ∩τ∈X;ii)FdenotesthesetoffiltersoverT;
iii)ifX⊆T,↑XdenotesthefiltergeneratedbyX;
iv)afilterisprincipalifitisoftheshape↑{σ},forsometypeσ.We
shalldenote↑{σ}simplyby↑σ.ItiseasytoverifythatthesetFoffilters,orderedbysubsetinclusion,isanω-algebraiccompletelattice,where↑Ωisthebottom,andTisthetop.Moreover,thefiniteelementsareexactlytheprincipalfilters.
UsingthemappingmwecanshowthatFandD∞areisomorphicasω-algebraiccompletelattices,asproved(forageneralcase)inAlessi[2].
Theorem2.(Isomorphism)
Themappingm∗:F→D∞definedby
∗
m(σ)m(X)=
σ∈X
isalatticeisomorphismbetweenFandD∞.Noticethatm∗(↑σ)=m(σ).
DuetotheaboveisomorphismtheinterpretationsoflambdatermsinD∞
areisomorphicwiththefiltersoftypesonecanderiveinthefollowingtypeassignmentsystem(Alessi[2]).Thisgivesusafinitarylogicaldescriptionofthemodel.
AtypeassignmentisanexpressionoftheformM:τ,whereM∈Λisthesubjectandτ∈Tisthepredicate.AcontextΓisa(possiblyinfinite)setoftypeassignmentsoftheshapex:σwithdifferentsubjects(termvariables).Definition9.(Thetypeassignmentsystem)
ThetypeassignmentM:τisderivablefromthecontextΓ,notationΓ⊢M:τ,ifΓ⊢M:τcanbegeneratedbythefollowingaxiomsandrules.
42
Γ⊢M:Ω
Γ⊢M:σ→τΓ⊢N:σ
(Ω)
(→I)
Γ⊢λx.M:σ→τ
Γ⊢M:σΓ⊢M:τ
Γ⊢M:τ
(≤)
Theorem3.(Finitarylogicaldescription)
ForanylambdatermMandenvironmentρ:var→D∞,
∞
=m∗({τ∈T|∃Γ|=ρ.Γ⊢M:τ}),[M]Dρ
whereΓ|=ρifandonlyif(x:σ)∈Γimpliesm(σ)⊑ρ(x).
Theorem3allowsustorephrasethemaintheoremofprevioussection,
Theorem1,asfollows:
Theorem4.(MainTheorem,VersionII)LetΓνˆ|x∈var}.Then:ˆbethecontextdefinedbyΓνˆ={x:νˆ;i)M∈PNiffΓνˆ⊢M:νii)M∈NiffΓνˆ⊢M:ν;iii)M∈PHNiffΓνˆ;ˆ⊢M:µiv)M∈HNiffΓνˆ⊢M:µ;
nv)M∈PWNiffΓνN;ˆ⊢M:Ω→Ωforalln∈I
vi)M∈WNiffΓνˆ⊢M:Ω→Ω.
TheproofsoftheifpartsofthisTheoremaremainlystraightforwardinductionsandcasesplit,andfollow,butthecaseofpersistentlynormalizingterms.ForthatcasewedevelopedanewcharacterizationofthesetermswhichislessgeneralbutmuchsimplerthantheonepresentedinDezanietal.[10].
Theproofsoftheonlyifpartsrequiretheset-theoreticsemanticsofin-tersectiontypesusingsaturatedsets.Thereducibilitymethodisagenerallyacceptedwayforprovingthestrongnormalizationpropertyofvarioustype
43
systems(Tait[26],[27],Girard[13],Mitchell[19],[20],Leivant[17],Pot-tinger[22],Krivine[16],vanBakel[28],Ghilezan[12],AmadioandCurien[3],Gallier[11],Dezanietal.[10]).
Inallthesepapersdifferentpropertiesarecharacterizedbymeansofdifferenttypeassignmentsystems:sothenoveltyofthepresentapproachisthatwecharacterizeallsixcomputationalpropertiesoftermsbymeansofauniquetypeassignmentsystem,whichinducesaλ-model.Moreover,inallthepapersmentioneddifferentcomputationalpropertiesrequiredifferenttypeinterpretationsinthereducibilitymethod,whereasweadaptthereducibilitymethodusingasingletypeinterpretationforallsixcomputationalproperties.
Lastly,weremarkthatthereareessentiallytwosemanticsforintersec-tiontypesintheliteratureandthatthepresentpaperdealswithbothofthem.Theset-theoreticalsemantics,originallyintroducedinbyBarendregtetal.[4],generalizestheonegivenbyScottforsimpletypes(Scott[24]).Themeaningsoftypesaresubsetsofthedomainofdiscourse,arrowtypesarede-finedaslogicalpredicatesandintersectionisset-theoreticintersection.Thissemanticsisatthebasisofourapplicationofthereducibilitymethod.ThesecondsemanticsviewstypesascompactelementsofPlotkin’sλ-structures(Plotkin[21]).Accordingtothisinterpretation,theuniversaltypedenotestheleastelement,intersectionsdenotejoinsofcompactelements,andarrowtypesallowtointernalizethespaceofcontinuousendomorphisms.Thisse-manticsallowsustoobtaintheisomorphismbetweenthemodelD∞andthesetFoffiltersoftypes.
4.Acknowledgement
Wearegratefultotherefereeforcarefulreadingandusefulsuggestions.
5.References
[1]AbramskyS.;Domaintheoryinlogicalform,Ann.PureAppl.Logic,Vol.
51(1–2),1991,pp.1–77.[2]AlessiF.;Struttureditipi,teoriadeidominiemodellidellambdacalcolo,Ph.D.
thesis,TorinoUniversity,1991.
44
[3]AmadioR.M.,CurienP.L.;DomainsandLambda-Calculi,CambridgeUniver-sityPress,Cambridge1998.[4]BarendregtH.,CoppoM.,Dezani-CiancagliniM.;Afilterlambdamodeland
thecompletenessoftypeassignment,J.SymbolicLogic,Vol.48(4),1983,pp.931–940.[5]BarendregtH.P.;TheLambdaCalculus:ItsSyntaxandSemantics,North-Holland,Amsterdam,revisededition,1984.[6]B¨ohmC.,Dezani-CiancagliniM.;λ-termsastotalorpartialfunctionsonnor-malforms,in:C.B¨ohm,(ed.),λ-calculusandComputerScienceTheory,Lec-tureNotesinComputerScience,Springer–Verlag,Vol.37,Berlin1975,pp.
96–121.[7]CoppoM.,Dezani-CiancagliniM.,HonsellF.,LongoG.;Extendedtypestruc-turesandfilterlambdamodels,in:G.Lolli,G.Longo,andA.Marcja,(eds.),Logiccolloquium’82,North-Holland,Amsterdam1984,pp.241–262.[8]Dezani-CiancagliniM.,GhilezanS.;Alambdamodelcharacterizingcomputa-tionalbehavioursofterms,in:Y.Toyama,(ed.),InternationalWorkshoponRewritinginProofandComputation,RPC’01,2001,pp.100–119.[9]Dezani-CiancagliniM.,GhilezanS.;Twobehaviourallambdamodels,in:
H.GeuversandF.Wiedijk,(eds.),TYPES2002,LectureNotesinComputerScience,Springer–Verlag,2003(toappear).[10]Dezani-CiancagliniM.,HonsellF.,MotohamaY.;Compositionalcharacteriza-tionofλ-termsusingintersectiontypes,in:M.NielsenandB.Rovan,(eds.),MathematicalFoundationsofComputerScience2000,LectureNotesinCom-puterScience,Springer–Verlag,Vol.13,2000,pp.304–313.[11]GallierJ.;Typinguntypedλ-terms,orreducibilitystrikesagain!,Ann.Pure
Appl.Logic,Vol.91,1998,pp.231–270.[12]GhilezanS.;Strongnormalizationandtypabilitywithintersectiontypes,Notre
DameJ.FormalLogic,Vol.37(1),1996,pp.44–52.[13]GirardJ.Y.;Uneextensiondel’interpr´etationdeG¨odela`l’analyse,etson
applicationa`l’eliminationdescoupuresdansl’analyseetlath´eoriedestypes,in:J.E.Fenstadt,(ed.),2ndScandinavianLogicSymposium,North-Holland,1971,pp.63–92.[14]JohnstoneP.T.;StoneSpaces,CambridgeUniversityPress,Cambridge1986,
reprintofthe1982edition.[15]KegelmanM.;ContinuousDomainsinLogicalForm,Ph.D.thesis,
SchoolofComputerScience,TheUniversityofBirmingham,1999,http://www.cs.bham.ac.uk/˜axj/former-students.html[16]KrivineJ.L.;Lambda-calculTypesetmod`eles,Masson,Paris1990.
45
[17]LeivantD.;Typingandcomputationalpropertiesoflambdaexpressions,Theo-ret.Comput.Sci.,Vol.44(1),1986,pp.51–68.[18]Martin-L¨ofP.;Lecturenotesondomaininterpretationoftypetheory,Pro-grammingMethodologyGroup,WorkshopontheSemanticsofProgramming
Languages,ChalmersUniversityofTechnology,1983.[19]MitchellJ.C.;Typesystemsforprogramminglanguages,in:J.vanLeeuwen,
(ed.),HandbookofTheoreticalComputerScience,Elsevier,Amsterdam,Vol.B,1990,pp.415–431.[20]MitchellJ.C.;FoundationforProgrammimgLanguages,MITPress,Boston
1996.[21]PlotkinG.D.;Set-theoreticalandotherelementarymodelsoftheλ-calculus,
Theoret.Comput.Sci.,Vol.121(1–2),1993,pp.351–409.[22]PottingerG.;Atypeassignmentforthestronglynormalizableλ-terms,in:J.P.
SeldinandJ.R.Hindley,(eds.),ToH.B.Curry:EssaysonCombinatoryLogic,LambdaCalculusandFormalism,AcademicPress,London1980,pp.561–577.[23]ScottD.S.;Continuouslattices,in:F.W.Lawvere,(ed.),Toposes,Algebraic
GeometryandLogic,LectureNotesinMathematics,Springer–Verlag,Vol.274,Berlin1972,pp.97–136.[24]ScottD.S.;Openproblem,in:C.B¨ohm,(ed.),LambdaCalculusandComputer
ScienceTheory,LectureNotesinComputerScience,Springer–Verlag,Vol.37,Berlin1975,p.369.[25]ScottD.S.;Domainsfordenotationalsemantics,in:M.NielsenandE.M.
Schmidt,(eds.),Automata,LanguagesandProgramming,LectureNotesinComputerScience,Springer–Verlag,Vol.140,Berlin1982,pp.577–613.[26]TaitW.W.;IntensionalinterpretationsoffunctionalsoffinitetypeI,Journal
ofSymbolicLogic,Vol.32,1967,pp.198–212.[27]TaitW.W.;Arealizabilityinterpretationofthetheoryofspecies,InR.Parikh,
(ed.),LogicColloquium,LectureNotesinMathematics,Springer–Verlag,Vol.453,Berlin1975,pp.240–251.[28]vanBakelS.;Completerestrictionsoftheintersectiontypediscipline,Theoret.
Comput.Sci.,1992,Vol.102(1),pp.135–163.
ReceivedNovember15,2002
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- xiaozhentang.com 版权所有 湘ICP备2023022495号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务