您好,欢迎来到小侦探旅游网。
搜索
您的当前位置:首页钛离子注入镁钙锌合金在SBF中的耐腐蚀性

钛离子注入镁钙锌合金在SBF中的耐腐蚀性

来源:小侦探旅游网
24

4

Vol.24No.4August2010

2010

8

CHINESEJOURNALOFMATERIALSRESEARCH

SBF

1,2

1,2,3

1

1,2

1,2

1.2.3.

300072

300072

300160

X

(EDS)X

(XPS)

(SEM)

Mg–1.0%Ca–1.0%Zn(

)

SBF

,

1.5×1017cm−2,

(SimulatedBody

Fluid,SBF)

:

,

TiO2

,

,

100nm,

;

,

,

,

,

,

TG172

1005-3093(2010)04-0383-06

CorrosionResistanceofTi–ionImplantedMg–Ca–Zn

AlloysinSBF

MAOLihe1,2,3

WANGYulin1∗∗

WANYizao1,2

HEFang1,2

HUANGYuan1,2

1.SchoolofMaterialsScience&Engineering,TianjinUniversity,Tianjin3000722.TianjinKeyLaboratoryofCompositeandFunctionalMaterials,Tianjin300072

3.SchoolofMaterialsScience&Engineering,TianjinPolynosicUniversity,Tianjin300160

*SupportedbytheScienceandTechnologyPlanProjectsofTianjinNo.07ZCKFSF01100.ManuscriptreceivedApril20,2010;inrevisedformJune10,2010.

**Towhomcorrespondenceshouldbeaddressed,Tel:(022)87894266,E–mail:ylwang@tju.edu.cn

ABSTRACTThecorrosionresistanceinthesimulatedbodyfluidofMg–1.0%Ca–1.0%Zn(massfraction)magnesiumalloywithTitaniumionimplantationof1.5×1017cm−2wasinvestigated.Theim-plantationelementcontent,distributionofelementsintothealloysurfacewereobtainedviaX-rayenergydispersivespectrometer(EDS)andX-rayphotoelectronspectroscopy(XPS);Thesurfacehardnessandmodulusofthealloy,thepolarizationcurveandthemorphologyintheSBFwerecharacterizedbynanosnick,threeelectrodesystemandscanningelectronmicroscoperespectively.Theresultsshowthattheimplantationelementcontentwasimprovedwiththeionimplantationdoseincreases.TiO2formedatthesurfaceofMg–1.0%Ca–1.0%Znmagnesiumalloy.HardnessandmoduluswereimprovedaftertheimplantationofTitaniumions,themaximumofsurfacehardnesswasacheviedatadepthof100nmbelowthealloysurface.Meanwhile,thepolarizationresistancewasstrengthenedandconsequentlythecorrosionresistanceofthealloywasimproved.

KEYWORDSmaterialsfailureandprotection,biomaterials,Mg–Ca–Znalloy,ionimplantation,cor-rosionresistance

−2.36V),,

[1−5]

,

Cl−

(

[6]

[7]

,

[8−10]

*

07ZCKFSF01100

[7]

2010

4

2020106

10

:

,

,

384

[11]

,,

,

,

,

[12]

,

Mg–1.0%Ca–1.0%Zn

,

(SimulatedBodyFluid,

SBF)

1

(

99.8%)

(

99.8%)

(

99.99%)

,

(

,

)

:Mg:98%,Ca:1.0%,Zn:1.0%(

Mg–1.0%Ca–1.0%Zn),1

T6:

315

5h,

465

,

12h

70

,

175

18h

,

(MEVVA),

1.0×10−5Pa

50KV,

−2

1.5×1017cmPHILIPS

XL30ESEMOxford

ISIS4.0EDSPHIQuan-teraSXM

X

2,

,X9µm–1.5mm,

0.5eV,

3MCPS,

45◦,

6.7×

10−8Pa;:

+Ar,

1mm×

1mm,

20nm/min,

2.0kV,

20mA

MTS

NanoIn-denterXPTM

25nm–

500nm,

<500nN

PRINCETON

PARSTAT2273

,

,

,

,

SBF,

1

Mg–1.0%Ca–1.0%Zn

Table1True-compositionofas–castMg–1.0%Ca–

1.0%Znalloy

Elements%(massfraction)

%(atomfraction)

W(Mg)94.41±0.694.13±0.6

W(Ca)1.10±0.10.62±0.2W(Zn)1.26±0.30.45±0.1W(O)

3.23±0.1

4.52±0.1

24

1

37±,

−20mV

+20mV

,

0.2mV/s

PHILIPS

XL30ESEM

[13]

(SBF),

Kokubo

10mm×10mm

×5mm

15min,

2

2.1

EDS

,

0.82%

1

1

Fig.1Resultsofnanoindentationtestingofalloy(a)

loading-unloadingcurves,(b)hardness-depthcurves,(c)modulus-depthcurves

4

:

SBF

385

Ti

2

,

Mg2p

49.95eV

,

,

,

(

1a)

Oliver–Pharr

,

Table2Meanhardnessandmodulusofalloysbe-(

2)

foreandafterimplantation

implanted

Averagehardness/MPaAveragemodulus/GPa

unimplanted

96238

78024

100nm

(

1b

c),

,

2

,

,

,

2.2Ti

2

,

Ti

MgCOTiCa

,

284.8eV

C1s,

3

3

1.5×1017ions/cm2

Ti

2Ti

XPS

TiMgOCa

Fig.2XPSspectrumofTi–ion–implantedAlloysur-3

3

,

1.5×1017ions/cm2

face

3Mg–1.0%Ca–1.0%Zn

Fig.3XPSspectraofelementsonthesurfaceofMg–1.0%Ca–1.0%ZnAlloy(a)O1s;(b)Mg2p(c)

Ca2p;(d)Ti2p3

386

3

Ti

24

(

Mg–1.0%Ca–1.0%Zn

1.5×1017ions/cm2)

Table3BindingenergyandchemistrybindingstateonthesurfaceofTi-ion-implantedMg-1.0%Ca-1.0%ZnAlloy(theimplantationdoseis1.5×1017ions/cm2)

elements

Bindingenergy/eV

implanted

reference529.40,529.80,529.70,530.00,530.10,

O

530.1,531.2,532.2

530.20,530.80,531.20,

531.30,532.1049.40,49.95,49.90,

Mg

50.80,49.95,49.70,

51.1

CaTi

346.10,347.30458.6,454.30,459.00,462,464.70

49.30,49.77,50.25,50.80,51.00,51.10347.30,346.10,

346.65

458.6,458.5,458,90459.0,458.50,458.70

459.20

Ti,TiO2CaO

Mg,MgO,MgO/MgTiO2,MgO,CaOChemicalstates

MgeV

,51.00eVTi

MgO

;Ti2p3

454.30

,

459.00458.60458.87eV

TiO2

,

MgMgOTi

TiO2

4

1.5×1017cm−2

Ti

,

(

)

4

,

,

,

,,

,

0–20nm

20nm

,

,

80nm

4

1.5×1017cm−2

Ti

,

,20nm

,

;

Fig.4ElementsconcentrationofAlloyalongthe

depth

,

80nm

,

10%

,

,

,

,

,,,

,

,

,

,

,

,

2.3

SBF

5

5

Fig.5Polarizationcurvesofalloys

4

:

SBF

387

[15]

,

,

MgO/CaO

,

,

,Ca

Mg,

Mg2Ca,

Stern–Geary

Mg2Ca

icorr=

1ba·bc

×

2.3(ba+bc)Rp

∆ERp=

∆Iα

,

[16−18]

,

[19]

,Zn

Mg6Ca2Zn3[20]

,

,

icorr

babc

Tafe

Rp

,

∆E

(Ecorr)

,

∆I

∆E

,

TiO2

Rp

,

,

Rp

2.4

SBF

72h

icorr

Ecorr

[14]

(

6ab),

(

6c,

5

,

d),

Rpicorr

Ecorr(

4)

,

4

,

,

,,

,

,

,

,

Ca

MgO

4Mg–1.0%Ca–1.0%Zn

Rp(Ω×cm2)

183.3166.0

Table4MainparametersofcorrosiveelectrochemistryforMg–1.0%Ca–1.0%Znalloys

Samplesimplantedunimplanted

icorr(A×10−6/cm2)

69.250.1

Ecorr(V)−1.85−1.50

6

SBF

72h

SEM

Fig.6SEMphotosbefore(a,c)andafter(b,d)Ti–ionimplantforMg–Ca–ZnalloyssoakedinSBF

388

3

1.

,

2.,

80nm

10%

,

TiO23.

,

SBF

72h

,

,

TiO2

,

1LILongchuan,GaoJiacheng,WangYong,Corrosionbe-haviorsandsurfacemodificationofmagnesiumalloysforbiomaterialapplications,MaterialsReview,17(10),29–32(2003)(

,

,

,

,

,17(10),29–32(2003))

2CMSerre,MPapillard,ChavassieuxP,Voegel.J.C.Boivin.

G.Influenceofmagnesiumsubstitutionona

collagen-apatitebiomaterialontheproductionofacalci-fyingmatrixbyhumanosteoblasts,JournalofBiomedicalMaterialsResearch,42(7),626–631(1998)

3HideyukiKuwahara,YousefAl-Abdullat,NaokoMazaki,SadamiTsutsumiandTatsuhikoAizawa,Precipitationofmagnesiumapatiteonpuremagnesiumsurfaceduringim-mersinginhankssolution,MaterialsTransactions,42(7),

1317–1321(2001)4

HUANGJingjing,Yangke,Biomedicalresearchofmag-nesiumalloys,MaterialsReview,20(4),67–69(2006)(,

,

,

,20(4),67–

69(2006))5

PMark.

Staiger,AlexisM.Pietak,JerawalaHuad-mai,GeorgeDias,Magnesiumanditsalloysasorthope-dicbiomaterials:Areview,Biomaterials,27(9),1728–1734(2006)6

CAOLinfeng,DUWenbo,SUXuekuan,Roleofcalciumalloyinginmagnesiumalloys,FoundryTechnology,27(2),182–184(2006)(,

,

,Ca

,

,27(2),182–184(2006))

7

JEGray,BLuan,HowusefulisSBFinpredictinginvivobonebioactivity,JournalofAlloysandCompounds,336(1-2),88-113(2002)

24

8ZhuXM,YangHG,LeiMK.CorrosionresistanceofAlionimplantedAZ31magnesiumalloyatelevatedtemper-ature,SurfaceandCoatingsTechnology,201(15),6663-

6666(2007)

9

LKutsenko,DFuks,AKiv,TaliankerMichael,BurlakaLjubov,MonteiroOthon,BrownIan.

Mechanismof

phasetransformationsinMg-basedalloyssubjectedto

plasmaimmersionionimplantationofAg,ActaMateri-alia,54(10),2637–2643(2006)

10ZhOUHai,ChenFei,YaoBin,HanGangjian,Jawid

Askari,PropertiesoftheTiNcoatingsonpreviouslyTiion-implantedmagnesiumalloysubstrate,SurfaceandCoatingsTechnology,201(15),6730–6733(2007)

11

INakamugawa,RMartin,EJ.Knystautas,ImprovingcorrosionresistanceofAZ91Dmagnesiumalloybynitro-genionimplantation,Corrosion,38(7),921–925(1996)12

CHENFei,ZHOUHai,YAOBin,WANGJianping,Cor-rosionresistanceofmagnesiumalloyafterTiionimplan-tation,SurfaceTechnology,36(3),7–9(2007)(

,

,

,

,

Ti

,,36(3),7–9(2007)

13

TadashiKokubo,HiroakiTakadama,HowusefulisSBFin

predictinginvivobonebioactivity,Biomaterials,27(15),2907–2915(2006)

14

HUMaofu,Electrochemicalcorrosion,(Beijin,thePressofMetallurgyIndustry,1991)p.96(

,(,,1991)p.96.)15

S.Mathieu,C.Rapin,J.Steimetz,Acorrosionstudyofthe

mainconstituentphaseofAZ91magnesiumaloys,Corros.Sci.,45(12),2741–2755(2003)

16

KarlHeinzMatucha,Structureandpropertiesofnon-ferrous-alloy(Beijin,thePressofScience,1999)p.110(KH,

(

,

,

1999)p.110)

17

LIUZheng,ZHANGKui,ZENGXiaoqin,TheoryanditsapplicationofMg-basedlightalloys(Beijin,thePressofMachineryIndustry,2002)p.144(

,

,

,

(

,,2002)p.144

18

WUXianliang,CorrosionandProtectionofMagnesium

Alloys(Shengyang,ChineseAcademyofSciencesInstituteofMetalCorrosionandProtectionPhDthesis,1999)p.87(

,

(

,

,1999)p.87

19

ZHANGZonglin,LIUZhaojing,LIFengzhen,Studyon

burningpoint&thecorrosionresistance&themechan-icalpropertyofmagnesiumalloy,LightAlloyProcessingTechnology,7(31),31–34(2003)(,

,

,

,,7(31),31–34(2003))

20

MAOLihe,WANGYulin,WANYizao,HEFang,HUANG

Yuan,EffectsofZnonmicrostructureandmechanicalpropertiesofthebiomedicalMg-Ca-Znalloys.HeatTreat-mentofMetals,34(10),19–21(2009)(

,

,

,

Mg–Ca–Zn

,

,34(10),19–21(2009))

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- xiaozhentang.com 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务