4
Vol.24No.4August2010
2010
8
CHINESEJOURNALOFMATERIALSRESEARCH
SBF
1,2
∗
1,2,3
1
1,2
1,2
1.2.3.
300072
300072
300160
X
(EDS)X
(XPS)
(SEM)
Mg–1.0%Ca–1.0%Zn(
)
SBF
,
1.5×1017cm−2,
(SimulatedBody
Fluid,SBF)
:
,
TiO2
,
,
100nm,
;
,
,
,
,
,
TG172
1005-3093(2010)04-0383-06
CorrosionResistanceofTi–ionImplantedMg–Ca–Zn
AlloysinSBF
MAOLihe1,2,3
WANGYulin1∗∗
WANYizao1,2
HEFang1,2
HUANGYuan1,2
1.SchoolofMaterialsScience&Engineering,TianjinUniversity,Tianjin3000722.TianjinKeyLaboratoryofCompositeandFunctionalMaterials,Tianjin300072
3.SchoolofMaterialsScience&Engineering,TianjinPolynosicUniversity,Tianjin300160
*SupportedbytheScienceandTechnologyPlanProjectsofTianjinNo.07ZCKFSF01100.ManuscriptreceivedApril20,2010;inrevisedformJune10,2010.
**Towhomcorrespondenceshouldbeaddressed,Tel:(022)87894266,E–mail:ylwang@tju.edu.cn
ABSTRACTThecorrosionresistanceinthesimulatedbodyfluidofMg–1.0%Ca–1.0%Zn(massfraction)magnesiumalloywithTitaniumionimplantationof1.5×1017cm−2wasinvestigated.Theim-plantationelementcontent,distributionofelementsintothealloysurfacewereobtainedviaX-rayenergydispersivespectrometer(EDS)andX-rayphotoelectronspectroscopy(XPS);Thesurfacehardnessandmodulusofthealloy,thepolarizationcurveandthemorphologyintheSBFwerecharacterizedbynanosnick,threeelectrodesystemandscanningelectronmicroscoperespectively.Theresultsshowthattheimplantationelementcontentwasimprovedwiththeionimplantationdoseincreases.TiO2formedatthesurfaceofMg–1.0%Ca–1.0%Znmagnesiumalloy.HardnessandmoduluswereimprovedaftertheimplantationofTitaniumions,themaximumofsurfacehardnesswasacheviedatadepthof100nmbelowthealloysurface.Meanwhile,thepolarizationresistancewasstrengthenedandconsequentlythecorrosionresistanceofthealloywasimproved.
KEYWORDSmaterialsfailureandprotection,biomaterials,Mg–Ca–Znalloy,ionimplantation,cor-rosionresistance
−2.36V),,
[1−5]
,
Cl−
(
[6]
[7]
,
[8−10]
*
07ZCKFSF01100
[7]
2010
4
2020106
10
:
,
,
384
[11]
,,
,
,
,
[12]
,
Mg–1.0%Ca–1.0%Zn
,
(SimulatedBodyFluid,
SBF)
1
(
99.8%)
(
99.8%)
(
99.99%)
,
(
,
)
:Mg:98%,Ca:1.0%,Zn:1.0%(
Mg–1.0%Ca–1.0%Zn),1
T6:
315
5h,
465
,
12h
70
,
175
18h
,
(MEVVA),
1.0×10−5Pa
50KV,
−2
1.5×1017cmPHILIPS
XL30ESEMOxford
ISIS4.0EDSPHIQuan-teraSXM
X
2,
,X9µm–1.5mm,
0.5eV,
3MCPS,
45◦,
6.7×
10−8Pa;:
+Ar,
1mm×
1mm,
20nm/min,
2.0kV,
20mA
MTS
NanoIn-denterXPTM
25nm–
500nm,
<500nN
PRINCETON
PARSTAT2273
,
,
,
,
SBF,
1
Mg–1.0%Ca–1.0%Zn
Table1True-compositionofas–castMg–1.0%Ca–
1.0%Znalloy
Elements%(massfraction)
%(atomfraction)
W(Mg)94.41±0.694.13±0.6
W(Ca)1.10±0.10.62±0.2W(Zn)1.26±0.30.45±0.1W(O)
3.23±0.1
4.52±0.1
24
1
37±,
−20mV
+20mV
,
0.2mV/s
PHILIPS
XL30ESEM
[13]
(SBF),
Kokubo
10mm×10mm
×5mm
15min,
2
2.1
EDS
,
0.82%
1
1
Fig.1Resultsofnanoindentationtestingofalloy(a)
loading-unloadingcurves,(b)hardness-depthcurves,(c)modulus-depthcurves
4
:
SBF
385
Ti
2
,
Mg2p
49.95eV
,
,
,
(
1a)
Oliver–Pharr
,
–
Table2Meanhardnessandmodulusofalloysbe-(
2)
foreandafterimplantation
implanted
Averagehardness/MPaAveragemodulus/GPa
unimplanted
96238
78024
100nm
(
1b
c),
,
2
,
,
,
2.2Ti
2
,
Ti
MgCOTiCa
,
284.8eV
C1s,
3
3
1.5×1017ions/cm2
Ti
2Ti
XPS
TiMgOCa
Fig.2XPSspectrumofTi–ion–implantedAlloysur-3
3
,
1.5×1017ions/cm2
face
3Mg–1.0%Ca–1.0%Zn
Fig.3XPSspectraofelementsonthesurfaceofMg–1.0%Ca–1.0%ZnAlloy(a)O1s;(b)Mg2p(c)
Ca2p;(d)Ti2p3
386
3
Ti
24
(
Mg–1.0%Ca–1.0%Zn
1.5×1017ions/cm2)
Table3BindingenergyandchemistrybindingstateonthesurfaceofTi-ion-implantedMg-1.0%Ca-1.0%ZnAlloy(theimplantationdoseis1.5×1017ions/cm2)
elements
Bindingenergy/eV
implanted
reference529.40,529.80,529.70,530.00,530.10,
O
530.1,531.2,532.2
530.20,530.80,531.20,
531.30,532.1049.40,49.95,49.90,
Mg
50.80,49.95,49.70,
51.1
CaTi
346.10,347.30458.6,454.30,459.00,462,464.70
49.30,49.77,50.25,50.80,51.00,51.10347.30,346.10,
346.65
458.6,458.5,458,90459.0,458.50,458.70
459.20
Ti,TiO2CaO
Mg,MgO,MgO/MgTiO2,MgO,CaOChemicalstates
MgeV
,51.00eVTi
MgO
;Ti2p3
454.30
,
459.00458.60458.87eV
TiO2
,
MgMgOTi
TiO2
4
1.5×1017cm−2
Ti
,
(
)
4
,
,
,
,,
,
0–20nm
20nm
,
,
80nm
4
1.5×1017cm−2
Ti
,
,20nm
,
;
Fig.4ElementsconcentrationofAlloyalongthe
depth
,
80nm
,
10%
,
,
,
,
,,,
,
,
,
,
,
,
2.3
SBF
5
5
Fig.5Polarizationcurvesofalloys
4
:
SBF
387
[15]
,
,
MgO/CaO
,
,
,Ca
Mg,
Mg2Ca,
Stern–Geary
Mg2Ca
icorr=
1ba·bc
×
2.3(ba+bc)Rp
∆ERp=
∆Iα
,
[16−18]
,
[19]
,Zn
Mg6Ca2Zn3[20]
,
,
icorr
babc
Tafe
Rp
,
∆E
(Ecorr)
,
∆I
∆E
,
TiO2
Rp
,
,
Rp
2.4
SBF
72h
icorr
Ecorr
[14]
(
6ab),
(
6c,
5
,
d),
Rpicorr
Ecorr(
4)
,
4
,
,
,,
,
,
,
,
Ca
MgO
4Mg–1.0%Ca–1.0%Zn
Rp(Ω×cm2)
183.3166.0
Table4MainparametersofcorrosiveelectrochemistryforMg–1.0%Ca–1.0%Znalloys
Samplesimplantedunimplanted
icorr(A×10−6/cm2)
69.250.1
Ecorr(V)−1.85−1.50
6
SBF
72h
SEM
Fig.6SEMphotosbefore(a,c)andafter(b,d)Ti–ionimplantforMg–Ca–ZnalloyssoakedinSBF
388
3
1.
,
2.,
80nm
10%
,
TiO23.
,
SBF
72h
,
,
TiO2
,
1LILongchuan,GaoJiacheng,WangYong,Corrosionbe-haviorsandsurfacemodificationofmagnesiumalloysforbiomaterialapplications,MaterialsReview,17(10),29–32(2003)(
,
,
,
,
,17(10),29–32(2003))
2CMSerre,MPapillard,ChavassieuxP,Voegel.J.C.Boivin.
G.Influenceofmagnesiumsubstitutionona
collagen-apatitebiomaterialontheproductionofacalci-fyingmatrixbyhumanosteoblasts,JournalofBiomedicalMaterialsResearch,42(7),626–631(1998)
3HideyukiKuwahara,YousefAl-Abdullat,NaokoMazaki,SadamiTsutsumiandTatsuhikoAizawa,Precipitationofmagnesiumapatiteonpuremagnesiumsurfaceduringim-mersinginhankssolution,MaterialsTransactions,42(7),
1317–1321(2001)4
HUANGJingjing,Yangke,Biomedicalresearchofmag-nesiumalloys,MaterialsReview,20(4),67–69(2006)(,
,
,
,20(4),67–
69(2006))5
PMark.
Staiger,AlexisM.Pietak,JerawalaHuad-mai,GeorgeDias,Magnesiumanditsalloysasorthope-dicbiomaterials:Areview,Biomaterials,27(9),1728–1734(2006)6
CAOLinfeng,DUWenbo,SUXuekuan,Roleofcalciumalloyinginmagnesiumalloys,FoundryTechnology,27(2),182–184(2006)(,
,
,Ca
,
,27(2),182–184(2006))
7
JEGray,BLuan,HowusefulisSBFinpredictinginvivobonebioactivity,JournalofAlloysandCompounds,336(1-2),88-113(2002)
24
8ZhuXM,YangHG,LeiMK.CorrosionresistanceofAlionimplantedAZ31magnesiumalloyatelevatedtemper-ature,SurfaceandCoatingsTechnology,201(15),6663-
6666(2007)
9
LKutsenko,DFuks,AKiv,TaliankerMichael,BurlakaLjubov,MonteiroOthon,BrownIan.
Mechanismof
phasetransformationsinMg-basedalloyssubjectedto
plasmaimmersionionimplantationofAg,ActaMateri-alia,54(10),2637–2643(2006)
10ZhOUHai,ChenFei,YaoBin,HanGangjian,Jawid
Askari,PropertiesoftheTiNcoatingsonpreviouslyTiion-implantedmagnesiumalloysubstrate,SurfaceandCoatingsTechnology,201(15),6730–6733(2007)
11
INakamugawa,RMartin,EJ.Knystautas,ImprovingcorrosionresistanceofAZ91Dmagnesiumalloybynitro-genionimplantation,Corrosion,38(7),921–925(1996)12
CHENFei,ZHOUHai,YAOBin,WANGJianping,Cor-rosionresistanceofmagnesiumalloyafterTiionimplan-tation,SurfaceTechnology,36(3),7–9(2007)(
,
,
,
,
Ti
,,36(3),7–9(2007)
13
TadashiKokubo,HiroakiTakadama,HowusefulisSBFin
predictinginvivobonebioactivity,Biomaterials,27(15),2907–2915(2006)
14
HUMaofu,Electrochemicalcorrosion,(Beijin,thePressofMetallurgyIndustry,1991)p.96(
,(,,1991)p.96.)15
S.Mathieu,C.Rapin,J.Steimetz,Acorrosionstudyofthe
mainconstituentphaseofAZ91magnesiumaloys,Corros.Sci.,45(12),2741–2755(2003)
16
KarlHeinzMatucha,Structureandpropertiesofnon-ferrous-alloy(Beijin,thePressofScience,1999)p.110(KH,
(
,
,
1999)p.110)
17
LIUZheng,ZHANGKui,ZENGXiaoqin,TheoryanditsapplicationofMg-basedlightalloys(Beijin,thePressofMachineryIndustry,2002)p.144(
,
,
,
(
,,2002)p.144
18
WUXianliang,CorrosionandProtectionofMagnesium
Alloys(Shengyang,ChineseAcademyofSciencesInstituteofMetalCorrosionandProtectionPhDthesis,1999)p.87(
,
(
,
,1999)p.87
19
ZHANGZonglin,LIUZhaojing,LIFengzhen,Studyon
burningpoint&thecorrosionresistance&themechan-icalpropertyofmagnesiumalloy,LightAlloyProcessingTechnology,7(31),31–34(2003)(,
,
,
,,7(31),31–34(2003))
20
MAOLihe,WANGYulin,WANYizao,HEFang,HUANG
Yuan,EffectsofZnonmicrostructureandmechanicalpropertiesofthebiomedicalMg-Ca-Znalloys.HeatTreat-mentofMetals,34(10),19–21(2009)(
,
,
,
Mg–Ca–Zn
,
,34(10),19–21(2009))
因篇幅问题不能全部显示,请点此查看更多更全内容