EGR
Master’sthesis
performedinVehicularSystems
by
FredrikSwartlingRegnr:LiTH-ISY-EX-3692-2005
15thJune2005
GasflowobserverforDieselEngineswith
EGR
Master’sthesis
performedinVehicularSystems,Dept.ofElectricalEngineeringatLink¨opingsuniversitet
byFredrikSwartlingRegnr:LiTH-ISY-EX-3692-2005
Supervisor:MattiasNyberg
ScaniaCVABJesperRitz´enScaniaCVAB
Examiner:AssistantProfessorErikFrisk
Link¨opingsUniversitetLink¨oping,15thJune2005
Avdelning,InstitutionDivision,DepartmentDatumDate
Spr˚akLanguage
Svenska/SwedishEngelska/English
ISBN
Serietitelochserienummer
Titleofseries,numbering
URLf¨orelektroniskversion
ISSN
Abstract
Duetostricteremissionlegislation,thereisaneedformoreefficientcon-trolofdieselengineswithexhaustgasrecirculation(EGR).Inparticular,itisimportanttoestimatetheair/fuelratioaccuratelyintransients.Thereforeanewenginegasflowmodelhasbeendeveloped.Thismodeldividesthegasintoonepartforoxygenandonepartforinertgases.Basedonthismodelanobserverhasbeendesignedtoestimatetheoxygenconcentrationinthegasgoingintotheengine,whichcanbeusedtocalculatetheair/fuelratio.Thisobservercanalsobeusedtoestimatetheintakemanifoldpressure.Theadvantageofestimatingthepressure,insteadoflowpassfilteringthenoisysignal,isthattheobserverdoesnotcausetimedelay.
Keywords:EGR,MeanValueEngineModel,Observer,Lambda
v
Preface
Thismaster’sthesishasbeenperformedforScaniaCVABatthedivisionofEngineSoftwareandOBD(NEE)duringthespringof2005.
Thesisoutline
Chapter1Ashortintroductiontothebackgroundandtheobjectivesofthis
thesisChapter2Thebasicsofcombustionchemistry
Chapter3ThemodelonwhichtheobserverisbasedisdescribedChapter4Theobserverdesign
Chapter5MeasurementsthatweredoneintheEGRsystemChapter6Conclusionsandfuturework
Acknowledgment
IwouldliketothankmysupervisorsatScania,JesperRitz´enandMattiasNybergandmyexaminerErikFriskformanyinspiringdiscussionsandyoursupport.ThanksalsotoallthehelpfulpeopleatScania,inparticularDavidElfvikandMatsJennischeatforalwaystakingyourtimetohelpmeandanswermyquestionsaboutenginecontrol.
FredrikSwartlingS¨odert¨alje,June2005
vi
Contents
Abstract
PrefaceandAcknowledgment1
Introduction
1.1Background..........................1.2Objectives...........................1.3Methods............................2
CombustionChemistry
2.1StoichiometricCombustion..................2.2Definitionofλtrue......................2.3DerivationanddefinitionofλO2...............3
Enginemodeling
3.1Introduction..........................3.2Choiceofmodelstates....................3.3Modelstructure......
..................3.3.1Compressor......................3.3.2IntakeManifold....................3.3.3Combustion......................3.3.4ExhaustManifold...................3.3.5EGR.........................3.3.6Turbine........................3.3.7ExhaustSystem....................3.3.8Turbocharger...
..................4
Observerdesign
4.1PropertiesoftheObservedSystem..............4.2DesignMethod........................4.3CalculatingNoiseMatrices....
..............4.3.1CalculatingR.....................4.3.2CalculatingQ.......
..............
vii
vvi112233447799101111121213151517181920
4.4
Observerdesignscomparisons................4.4.1Evaluatingtheneedformultiplelinearizations...4.4.2EvaluatingthepossibilitytocalculateKoff-line...4.5
Evaluation...........................4.5.1Comparisonwithlowpassfiltering.........4.5.2Evaluationofλobserver.............
..5
ValidationofEGRflow
5.1Introduction..........................5.2TheCatalyticConverterExperiment
.............5.2.1TheoreticalBackground...............5.2.2ExperimentalSetup..................5.2.3Results........................5.3Conclusion.............
...........
.
.
6
ConclusionsandFutureWork
6.1Conclusions..........................6.2Futurework..........................
ReferencesNotation
ADerivationofλtrue
viii
23232424242729292929303031333333353739
Chapter1
Introduction
1.1Background
Duetostricteremissionlegislationforheavydutytrucks,manufacturershavecomeupwithnewmethodstoreduceemissions.Onepopularmethodisexhaustgasrecirculation(EGR).
Exhaust Gas Recirculation
Intake ManifoldExhaust ManifoldFigure1.1:OverviewofEGRsystem
Thebasicideawithexhaustgasrecirculationistoleadsomeoftheex-haustgasbackintotheengine,asshowninFigure1.1.ThislowersthecombustiontemperatureandleadstoreducedNOxemissionssinceNOxpro-ductioniscloselyrelatedtothepeaktemperatureofthecombustion.Thecombustiontemperaturewillbeloweredbecausetherecirculatedexhaustgas
1
2Introduction
Chapter2
CombustionChemistry
Whendecidinghowmuchfueltoinjectintheengineitisimportanttoknowhowmuchairthereisavailable.Thischapterisashortresumeofthechem-istryofthecombustion,oldwaysofkeepingtrackoftheair/fuelratio,andintheendaproposalofhowtheair/fuelratiocouldbedefinedinawaythatsuitsEGRenginesbetter.
2.1StoichiometricCombustion
Duringinternalcombustion,fuelisburntinthepresenceoftheoxygenintheair,resultinginwaterandcarbondioxideasshowninEq.2.1[1].b
CaHb+a+
a,
2
b
H2O+3.773a+
whichshowstherelativeamountof
carboninthefuel.TobalanceEq.2.1,theamountoffuelandairgoingintothereactionhastobeinbalance.Hereairissupposedtohavethecomposition(O2+3.773N2).Whenthisbalancebetweenthefuelmassandtheairmassisachieved,theair/fuelproportionisstoichiometric.ThestoichiometricrelationoffuelandairinEq.2.1isderivedinEq.2.2.
A
4)(mO2
+3.773mN2)
isaround
14.7,i.e.themassoftheairhastobe14.7timeslargerthanthemassofthefuelforthereactiontobebalanced.
Fs
3
4Chapter2.CombustionChemistry
m˙fuel
A
1−EGR%
EGR%=
m˙egr
(2.4)
m˙fuel
Fs
isthestoichiometricrelationbetweenoxygenandfuel.m˙im,O2
istheoxygenpartoftheflowintotheengine.
O
4)mO2
O
2.3.DerivationanddefinitionofλO2
5
6
Chapter3
Enginemodeling
3.1Introduction
Inthischapterthemodelthatwillbeusedfortheobserverdesignwillbedescribed.Themodelisanextendedversionofagasflowmodeldevelopedin[5],[6]and[7].Figure3.1andTable3.1showamodeloverviewandexplainthemodel’sinputsignals.
u_egrW_egrW_trbW_eng,inW_eng,outW_esIntakeManifoldExhaustManifoldu_vgtTurbineExhaustSystemT_imTurbine shaftN_eng, deltaT_amb,p_amb
CompressorW_cmpFigure3.1:Modelwithinputsandmassflows
7
8Chapter3.Enginemodeling
NengEnginespeed[rpm]
δInjectedfuel
[kg/stroke]TimIntakemanifoldtemperature[K]pambAmbientpressure[Pa]TambAmbienttemperature[K]uegrEGRvalveposition[V]uvgtVGTvaneposition[V]
3.3.Modelstructure9
pim,O2pim,inertpem,O2pem,inertpesntrbIntakemanifoldoxygenpressureIntakemanifoldinertgaspressureExhaustmanifoldoxygenpressureExhaustmanifoldinertgaspressureExhaustsystempressureTurbinespeed[Pa][Pa][Pa][Pa][Pa][rpm]
pamb
,ntrb
(3.1)
TheflowcanbedividedintoanoxygenandaninertpartasinEq.3.2and3.3sincethecompositionofpureairiswellknown.Themassoftheoxygenis23%ofthetotalairmass.
Wcmp,O2=0.23Wcmp,totWcmp,inert=0.77Wcmp,tot
(3.2)(3.3)
3.3.2IntakeManifold
Thestateequationforthepressureinallcontrolvolumesarederivedfromtheidealgaslaw.InEq.3.4itisassumedthatallpressurechangescomefromthechangesinmass,notintemperature.
p˙=
RT
MV
m˙
(3.4)
istheuniversalgasconstant,MthemolecularweightandRisagaswhereR
specificconstantthatdependsonmassofthemolecules.ApplyingEq.3.4totheintakemanifoldgivesthefollowingequationsforp˙im,O2andp˙im,inert:
p˙im,O2=
RO2Tim
10Chapter3.Enginemodeling
(Wcmp,inert+Wegr,inert−Weng,in,inert)(3.6)Vim
where
pim,tot=pim,inert+pim,O2
3.3.3Combustion
Thevolumeflowofairintotheengineis
VdNeng
120RimTim
ηvolismappedfrommeasurementdatawithaxesasinEq.3.9.
ηvol=fηvol
Npeng,
im
pO2V
mm˙tot
tot=
pO2V
m˙tot=
RinertT
pO2Rinert
pim,O2Rinert+pim,inertRWO2
eng,in,totWeng,in,inert=
pim,inertRO2
120
(3.7)
(3.8)
(3.11)
(3.13)
3.3.Modelstructure11
F
,0
s
(3.14)
Themassoftheinertgasthatgoesoutoftheengineisthemassoftheinertgasthatgoesintotheengineplusthefuelmassandtheburnedmassoftheoxygen,3.15.
O
Weng,out,inert=Weng,in,inert+Wfuel+minWfuel
cp,exh(Weng,in+Wfuel)
(3.16)
3.3.4ExhaustManifold
Thepressureintheexhaustmanifold,pem,ismodeledinthesamewayastheintakemanifoldpressure.
p˙em,O2=
RO2Tem
Vem
where
(Weng,out,inert−Wegr,inert−Wtrb,inert)(3.18)pem,tot=pem,inert+pem,O2
(3.19)
3.3.5EGR
ThetotalEGRflowismodeledasacompressibleisentropicflowthrougharestriction[1],Eq.3.20.
pempim
Wegr,tot=AegrΨ
TemR
,γe
=
pem
12Chapter3.Enginemodeling
2γe
pem
γe+1
γe+1
2
γe+1
pempem
≥
2
γe−1
pem
=
2
γe−1
(3.22)
TheactiveareafunctionAegrisamapcalibratedfrommeasurementdata,Eq.3.23.
Aegr=f(uegr)(3.23)Thedivisionoftheflowintotwopartsismadeasdescribedearlier.
Wegr,O2=
pem,O2Rinert
pem,O2Rinert+pem,inertRO2
Wegr,tot(3.25)
3.3.6Turbine
Thetotalflowthroughtheturbineismodeledfromamap,Eq.3.26that
dependsonthespeedoftheturbine,thepositionoftheVGTandthepressureratiobetweenpemandpes.
pem
Wtrb,tot=fWtrb
pem,O2Rinert+pem,inertRO2
Wtrb,inert=
pem,inertRO2
Wtrb,tot(3.27)
Ves
(Wtrb,O2+Wtrb,inert−Wes)
(3.29)
3.3.Modelstructure13
kesRexhTes
(pes−pamb)
(3.30)
wherekesiscalculatedfrommeasurementdata.
3.3.8Turbocharger
Theturbochargerconsistsofaturbineshaft,aturbineandacompressorthatinflictstorqueontheshaft.Thedynamicsintheturbineshaftcomefromthebuildupofmomentofinertia.Themassisacceleratedbythetorquedifferenceoftheturbineandthecompressor.
ωtrb=
1
ωtrb
wheretheefficiency,ηtrb,ismappedfrommeasurementdata.
pem
ηtrb=fηtrb
pim
1−
pem
γexh
(3.32)
γair
ηcmpωcmp
wheretheefficiency,ηcmp,ismappedfrommeasurementdata.
pim
ηcmp=fηcmp
−1
(3.34)
14
Chapter4
Observerdesign
4.1PropertiesoftheObservedSystem
Beforestartingdesigningtheobserverthepropertiesofthesystemfromchap-ter3willbeanalyzed.Twothingsthathastobeclarifiedareifthesystemisstableandifitisobservable.Observabilityisneededfortheobservertobeabletoestimatethestatesfromthemeasuredsignals.Inthisanalysisthesystemhasbeenlinearizedinstationaryoperatingpointscoveringthewholeworkingareaoftheengine.Afterlinearizing,linearcontroltheoryhasbeenappliedtothesystemtounderstandthebehavior.Theassumptionismadethatifstabilityandobservabilitycanbeprovenforalllinearizations,thenonlinearsystemwillbestableandobservableintheworkingarea.
Whatconcernsthestability,thesystemisstableinallthelinearizations.
Figure4.1showsanexampleofapoleplacementat1300rpmandδ=150mg/stroke.Thepolediagramlookssimilarforallstationaryoperatingpoints,withonefastpolesomewherebetween-1500and-100.Thisfastpolecomesfromthepim,O2state.Thecombinationofonefastpoleandseveralslowonesgivesthesystemstiffcharacteristics.Thiscancauseproblemwhensolvingthesystemsdifferentialequationsandthelinearizedmodel’sA-matrixisillconditioned.TheA-matrixcausesproblemslaterinthischapter.
Toanalyzetheobservabilityofthesystemtheobservabilitymatrixiscal-culatedasEq.4.1.Iftherankofthismatrixisfull,thesystemisobservable.
C
CA
(4.1)...
CAn−1
Computingthismatrixforthelinearizationsdoesnotgivefullrank,sothismethodcannotprovethatthesystemisobservable.Howeverthereisreasontobelievethatthefactthattheobservabilitymatrixdoesnothavefullrank
15
16Chapter4.Observerdesign
4.2.DesignMethod17
18Chapter4.Observerdesign
4.3.CalculatingNoiseMatrices19
20Chapter4.Observerdesign
4.3.CalculatingNoiseMatrices21
22Chapter4.Observerdesign
4.4.Observerdesignscomparisons23
1126763024212611723761142433119511111
10.93%1.08%4.50%4.07%20.90%1.05%4.33%3.84%30.82%1.03%4.33%3.82%40.75%0.81%4.50%4.46%50.72%0.83%5.01%4.16%
24Chapter4.Observerdesign
41.44%100.87%200.%500.90%
4.5.Evaluation25
26Chapter4.Observerdesign
4.5.Evaluation27
RairTim
(4.14)
Adrawbackwiththeconventionalmethodisthatitusesthedifferentiationofpim,whichisanoisysignal.Anotheroneisthatthemassflowsensoritselfhaslowfrequencynoisethatisimpossibletofilterwithoutloosingtoomuchofthedynamicpropertiesofthesignal.
InFigure4.9theoldwayofcalculatingλiscomparedwiththeobservedλ.Thefigureshows100secondsfromanETC.Theλ-signalcalculatedfromthesensorhasbeenfilteredwitha5Hznoncausallowpassfiltertomakeiteasiertoview,butstilltheappearanceoftheobservedsignalismuchbetter.Unfortunatelythereisanoffseterrorbetweentheobservedλandtheconven-
.3.532.521.510.5002040time[s]6080100λλtrue calculated from mass flow sensorObserved λO2Figure4.9:Lambdacalculationcomparison
tionalλ,andthisderivesfromthedifferentmethodsofcalculatingtheEGRflow.Theoffsetcanberemovedwithcalibration,buttherewillstillbesomecaseswherethetheseflowsaredifferent.Awayofremovingtheuncertainty
28Chapter4.Observerdesign
Chapter5
ValidationofEGRflow
5.1Introduction
Theobservedquantitythatwouldbethemostinterestingtovalidateinthisthesisistheoxygenconcentrationintheintakemanifold,sincethisisthemainpurposeoftheobserver.Unfortunatelythelowtemperatureinthein-takemanifoldmadeitimpossibletogetaconcentrationsensortoworkthere.InsteadfocuswasputonvalidatingtheEGRflowmodelduringtransientssincethisisthemostuncertainpartofthemodel.TheEGRflowmodelhasonlybeenvalidatedinsteadystateearlier.ThereasonwhythedynamicsoftheEGRflowmodelhasnotbeenvalidatedisthattheconventionalmethodformeasuringEGRflowisdesignedforaccuratemeasurementinsteadystateonly.PuttingamassflowsensorintheEGRsystemisnotpossible.Thetemperatureistoohighandmassflowsensorsdonotworkwhenthegasisnotclean.Insteadamoreinnovativemethodwasexamined.TheideawiththismethodistoputacatalyticconverterintheEGRsystemandmeasurethepressuredropoverit.Fromthispressuredroptheflowcanbecalculated.
5.2TheCatalyticConverterExperiment
5.2.1TheoreticalBackground
Theideaofusingacatalyticconvertertoproduceapressuredropwaspro-posedby[4].Theparticularitywithusingacatalyticconverterinsteadofasquaredrestrictionisthatinthecasewiththecatalyticconverter,thepressuredropwillhavealinearrelationwiththemassflowforcertainmassflows.Thisphenomenonisduetothefactthattheconverterconsistsofmultiplepipesthatreducestheturbulenceofthegas.ReducingtheturbulenceisanimportantissueintheEGRsystem,sinceitisaveryturbulentenvironment.
29
30Chapter5.ValidationofEGRflow
5.3.Conclusion31
32Chapter5.ValidationofEGRflow
Chapter6
ConclusionsandFutureWork
6.1Conclusions
Anewenginegasflowmodelhasbeendeveloped.Thismodeldividesthegasintoonepartforoxygenandonepartforinertgases.Basedonthismodel,anobserverhasbeendesignedtoobservetheoxygenconcentrationinthegas.Theobservercanalsobeusedtoestimatethemeasuredpressuresintheintakemanifoldandtheexhaustmanifold.Theadvantageofestimatingmeasurablesignalswithanobserverinsteadofusingalowpassfilter,isthattheobserverusestheknowledgeaboutthesystemtopreservethegooddynamicsofasignalwhilereducingthenoise.Whatconcernsthepressureintheintakemanifoldtheobserverinthisthesisestimatesthissignalwiththesamenoiselevelasa2Hzlowpassfilteredsignalwithoutconsiderabletimedelay.Theobservercanthereforewithadvantagereplacealowpassfilter.Thisisnottruefortheexhaustmanifoldpressureestimation,wherethemodelerroristoobigtocompetewithanormalfilter.
AcriticalissuewiththeobserveristheuncertaintyinthemodeloftheEGRflow.IthasnotbeenpossibletovalidatetheEGRmodelduringtransientbehavior.ApartfromtheuncertaintieswiththeEGRflow,λcalculatedwiththeobserverhaveverygoodproperties.ThefactthatλO2,asdefinedinthisthesis,doesn’tusetheERGflowexplicitlygivesamorestablesignalthantheconventionalone.Thissignalissuitableforenginecontrolpurposes.
6.2Futurework
Thereisstillinterestingworkthatcanbedoneinthisarea.Aboveall,mea-surementdatafromrealtrucksisneededtoseehowwellλO2canbeused
33
34Chapter6.ConclusionsandFutureWork
References
[1]J.B.HeywoodInternalCombustionEngineFundamentals.McGrae-hill,
1988[2]A.Gelb,J.F.KasperJr,R.A.NashJr,C.F.Price,A.A.sutherland
Jr.AppliedOptimalEstimation.MassachusettsInstituteofTechnology,1974[3]H.H.RosenbrockState-spaceandmultivariabletheory
[4]F.Ekstr¨omandB.Andersson.PressureDropofMonolithicCatalytic
Converters,ExperimnetsandModeling.SAE2002WorldCongress,De-trit,Michigan,March2002[5]D.Elfvik.ModellingofadieselenginewithVGTforcontroldesignsim-ulations.Master’sthesisIR-RT-EX-0216,DepartmentofSignals,Sen-sorsandSystems,RoyalInstituteofTechnology,Stockholm,Sweden,July2002[6]J.Ritz´enModellingandfixedstepsimulationofaturbochargeddiesel
engine.Master’sthesisLiTH-ISY-EX-3442,DepartmentofElectricalEngineering,Link¨opingUniversity,Link¨oping,Sweden,June2003[7]C.EricsonMeanvaluemodellingofapoppetvalveEGR-system.Mas-ter’sthesisLiTH-ISY-EX-33,DepartmentofElectricalEngineering,Link¨opingUniversity,Link¨oping,Sweden,June2004[8]P.AnderssonandL.ErikssonObesrverbasedfeedforwardair-fuelcon-trolofturbochargedSI-enginesVehicularSystems,ISY,Link¨opingUni-versity,Link¨oping,Sweden[9]P.AnderssonandL.ErikssonMean-valueobserverforaturbochargedSI-engineVehicularSystems,ISY,Link¨opingUniversity,Link¨oping,Swe-den
35
36
Notation
Table6.1:SymbolsusedinthereportValueDescription
SymbolUnit
37
38Notation
imemesdcmptrbengegrintambexhinertO2totIntakemanifoldExhaustmanifoldExhaustsystem
DisplacementvolumepercylinderCompressorTurbineEngine
EGRsystemIntercoolerAmbientExhaust
InertgasfractionOxygengasfractionAllgas
AppendixA
Derivationofλtrue
megrmegr,air
mcmp,air
mexh mexh,airmfuel
FigureA.1:Definitionofmassflows
FigureA.1andTableA.1showsthegasflowsaroundtheengine,includ-ingEGR.Inadditiontothetotalflow,thepartoftheflowthatconsistsofpureair,asdefinedinpreviouschapter,isrepresentedasaseparateflow.Thegasfromthecompressorisalwayspureair,soonlyoneflowisneeded.Eq.A.1andA.2arebasicrelationshipsfortheexhaustgascompositionthatarevalidduringsteadystate.InEq.A.2itisassumedthatallthefuelwillbeburned
39
40AppendixA.Derivationofλtrue
m˙cmp,airm˙egrm˙egr,airm˙exhm˙exh,airm˙fuelAirflowfromcompressor
TotalgasflowthroughEGRAirflowthroughEGR
TotalgasflowleavingcylindersAirflowleavingcylindersFuelmassflow
F
s
m˙fuel=m˙egr,air+(λmeas−1)
A
m˙exh
(A.3)
CombiningEq.A.1,A.2andA.3givesanexpressionform˙egr,air,whichwill
beusedtoderiveλtrue.
˙fuelm˙exh,airFsmm˙egr,air=m˙egr
(λmeas−1)A=m˙egr
m˙cmp,air+m˙fuel+m˙egr
Fs
m˙cmp,air+m˙fuel+m˙egr
⇔m˙egr,air
m˙cmp,air+m˙fuel
m˙fuel
Fs
m˙fuel
A
m˙cmp,air+m˙fuel
=
41
m˙cmp,air+m˙fuel
λmeasm˙cmp,air(1+=
)1
)λ+m˙egr(λmeas−1)
=
F
s
meas
(A
A
m˙cmp,air
=
λmeas−EGR%
42
Copyright
Svenska
Dettadokumenth˚allstillg¨angligtp˚aInternet-ellerdessframtidaers¨attare-underenl¨angretidfr˚anpubliceringsdatumunderf¨oruts¨attningattingaextra-ordin¨araomst¨andigheteruppst˚ar.
Tillg˚angtilldokumentetinneb¨artillst˚andf¨orvarochenattl¨asa,laddaner,skrivautenstakakopiorf¨orenskiltbrukochattanv¨andadetof¨or¨andratf¨or
¨ickekommersiellforskningochf¨orundervisning.Overf¨oringavupphovsr¨atten
vidensenaretidpunktkaninteupph¨avadettatillst˚and.Allannananv¨andningavdokumentetkr¨averupphovsmannensmedgivande.F¨orattgaranteraa¨ktheten,s¨akerhetenochtillg¨anglighetenfinnsdetl¨osningaravtekniskochadministra-tivart.
Upphovsmannensideellar¨attinnefattarr¨attattblin¨amndsomupphovs-manidenomfattningsomgodsedkr¨avervidanv¨andningavdokumentetp˚aovanbeskrivnas¨attsamtskyddmotattdokumenteta¨ndrasellerpresenterasis˚adanformelleris˚adantsammanhangsoma¨rkr¨ankandef¨orupphovsman-nenslitter¨araellerkonstn¨arligaanseendeelleregenart.
F¨orytterligareinformationomLink¨opingUniversityElectronicPresssef¨orlagetshemsida:http://www.ep.liu.se/
English
ThepublisherswillkeepthisdocumentonlineontheInternet-oritspossiblereplacement-foraconsiderabletimefromthedateofpublicationbarringexceptionalcircumstances.
Theonlineavailabilityofthedocumentimpliesapermanentpermissionforanyonetoread,todownload,toprintoutsinglecopiesforyourownuseandtouseitunchangedforanynon-commercialresearchandeducationalpurpose.Subsequenttransfersofcopyrightcannotrevokethispermission.Allotherusesofthedocumentareconditionalontheconsentofthecopy-rightowner.Thepublisherhastakentechnicalandadministrativemeasurestoassureauthenticity,securityandaccessibility.
Accordingtointellectualpropertylawtheauthorhastherighttobemen-tionedwhenhis/herworkisaccessedasdescribedaboveandtobeprotectedagainstinfringement.
ForadditionalinformationabouttheLink¨opingUniversityElectronicPressanditsproceduresforpublicationandforassuranceofdocumentintegrity,pleaserefertoitsWWWhomepage:http://www.ep.liu.se/
cFredrikSwartlingLink¨oping,15thJune2005
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- xiaozhentang.com 版权所有 湘ICP备2023022495号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务