搜索
您的当前位置:首页Zeta Strings

Zeta Strings

来源:小侦探旅游网
ZetaStrings

7002 raM 1 1v8003070/ht-pe:hviXraBrankoDragovich∗

InstituteofPhysics

Pregrevica118,P.O.Box57,11001Belgrade,Serbia

Abstract

Weintroducenonlinearscalarfieldmodelsforopenandopen-closedstringswithspacetimederivativesencodedintheoperatorval-uedRiemannzetafunction.ThecorrespondingtwoLagrangiansarederivedinanadelicapproachstartingfromtheexactLagrangiansforeffectivefieldsofp-adictachyonstrings.Asaresulttachyonsareab-sentinthesemodels.Thesenewstringsweproposetocallzetastrings.Somebasicclassicalpropertiesofthezetastringsareobtainedandpresentedinthispaper.

1Introduction

Therearejusttwentyyearsfromthepublicationofthefirstpaperonthep-adicstring[1].Sofarp-adicstructureshavebeenobservednotonlyinstringtheorybutalsoinmanyothermodelsofmodernmathematicalphysics(forareviewoftheearlydaysdevelopments,seee.g.[2],[3]).

Oneofthegreatestachievementsinp-adicstringtheoryisaneffectivefielddescriptionofscalaropenandclosedp-adicstrings[4],[5].ThecorrespondingLagrangiansareverysimpleandexact.Theydescribenotonlyfour-pointscatteringamplitudesbutalsoallhigheronesatthetree-level.

Thisp-adicstringtheoryhasbeensignificantlypushedforwardwhenwasshown[6]thatitdescribestachyoncondensationandbranedescentrelations

simplerthanbyordinarybosonicstrings.Afterthatsuccess,manyaspectsofp-adicstringdynamicshavebeeninvestigatedandcomparedwithdynamicsofordinarystrings(see,e.g.[7]andreferencestherein).Noncommutativede-formationofp-adicstringworld-sheetwithaconstantB-fieldwasinvestigatedin[8](onp-adicnoncommutativityseealso[9]).Asystematicmathematicalstudyofspatiallyhomogeneoussolutionsofthenonlinearequationofmo-tionwasperformedin[10].Somepossiblecosmologicalimplicationsofp-adicstringtheoryhavebeenalsoinvestigated[11].Itwasrecentlyproposed[12]thatp-adicstringtheoriesprovidelatticediscretizationtotheworld-sheetofordinarystrings.Asaresultofthesedevelopmentsmanynontrivialfea-turesofordinarystringtheoryhavebeenreproducedfromthep-adiceffectiveaction.

Adelicapproachtothestringscatteringamplitudesisaveryusefulwaytoconnectp-adicandordinarycounterparts(see[2]asareview).More-over,iteliminatesunwantedprimenumberparameterpcontainedinp-adicamplitudesandalsocurestheproblemofp-adiccausalityviolation.Adelicgeneralizationofquantummechanicswasalsosuccessfullyformulated,andwasfoundaconnectionbetweenadelicvacuumstateoftheharmonicoscil-latorandtheRiemannzetafunction[13].Recently,aninterestingapproachtowardfoundationofafieldtheoryandcosmologybasedontheRiemannzetafunctionwasproposedin[14].AnadelicapproachwiththeRiemannzetafunctionisoneofthemotivationsforthispaper.

Thepresentpaperisaresultoftheattempttointegrateallp-adiceffectivefieldactionsintoonebosonicfieldtheory.Inthenexttwosectionsweexplorethecasesofopenandopen-closedbosonicstrings.

2Openscalarzetastring

Theexacttree-levelLagrangianforeffectivescalarfieldϕwhichdescribesopenp-adicstringtachyonis

L1

p=

1p−1

󰀅−2

ϕ+

1

timederivativesfollowsfromtheexpansion

p

−󰀁

2

󰀂󰀄󰀁lnp

−lnp󰀁=

k≥0

k!

󰀁k.

Theequationofmotionfor(1)is

p−

󰀁

n2

=

1

2

n−1

Ln

n+1

φ

n+1

φ

󰀄

n≥1

n

−󰀁

󰀇

,(3)

wherecoefficientsCn=

andCn=1,

butitseemstobelessnatural.Thusweretainthestringcouplingconstantg.ToemphasizethatLagrangian(3)describesanewfield,whichtakesintoaccountallp-adicfields,weintroducednotationφinsteadofϕ.ThetermC1L1=0,becauseofitstwoequalpartsofoppositesign,butthesepartsgivecontributiontokineticandpotentialtermsofthetotalLagrangianL.AccordingtothefamousEulerproductformulaonecanwrite

g2

g2

n2

󰀄

n≥1

n−

󰀁

1−p−

󰀁

ζ(s)=

󰀄1

n≥1

1−

p−s

,s=σ+iτ,σ>1.(4)

Employingusualexpansionforthelogarithmicfunctionanddefinition(4)wecanrewrite(3)intheform

L=−

󰀂

12φζ󰀁󰀁

2

actsaspseudodifferentialoperatorinthefollowingway(seealso

󰀈

󰀁k2ζ−

[14]):ζ󰀁󰀁

(2π)D

e

ixk

2

󰀂

φ=

1

2

󰀂

˜(k)dk=φ

φ

g

[φ+ln(1−φ)]=−2

1

n

,(8)

4

whereV(φ)≤0for−1<φ<1:itincreasesfromV(φ→−1)=−0,31

2

󰀂

φ(t)=

1

2+ε

e

−ik0t

ζ

󰀁k2

0

1−φ(t)

.(9)

Intheweakfieldapproximation(|φ(t)|≪1)theaboveexpressionφ/(1−φ)≈φand(9)becomesalinearequationwhichcanbewrittenintheform

󰀈󰀇󰀅󰀁k2

0−ik0t˜(k0)dk0=0,2−ε)−1φ(10)ζe

R

whereθistheHeavisidefunction.Sinceζ02the

˜(k0)=0.Thisalsomeanstheabsenceequation(10)hassolutiononlyforφ

ofmass.

󰀁

k2

3Openandclosedscalarzetastrings

TheexactLagrangianforthecoupledopenandclosedp-adictachyonsispresentedin[2]anditreads

1p−11p2−1g2

󰀅

111

11

󰀇−1)

L′p

=+

󰀅

2

ϕ+

4

2

p+1

ψ+

Mp(ϕ,ψ)+

1

1

L′=

n2

Mn(φ,θ)+n4

Nn(θ)

=

1

2

φn−

󰀁

+1

θ

n(n−1)

nh2

󰀄n≥1

󰀅

1

4

θ+

1

g2󰀅

1

2󰀂

φ+

󰀄

1

2

(φn+1

n≥1

−1)

+

1

󰀁

2+1

2θζ

󰀁2+1

θ

n󰀇

󰀇n(13)

forthecoupledzetastringsφandθ,whichareopenandclosed,respectively.Theequationsofmotionare

ζ

󰀁󰀁

(2π)D

󰀈eixkζ󰀁−k22φn,(14)ζ

󰀁󰀁

󰀈

ixk

k2(2π)D

e

ζ󰀁

+1)

θ

n(n−1)

2(n2

󰀂

φ=φ,ζ

󰀁󰀁

Thecorrespondingpotentialis

󰀄󰀅1

n≥1

n(n−1)

V(φ,θ)=

n+1

θ

1h2

References

[1]I.V.Volovich,p-Adicspace-timeandstringtheory,Theor.Math.Phys.

71(1987)340;seealsop-Adicstring,Class.QuantumGrav.4(1987)L83-L87.[2]l.BrekkeandP.G.O.Freund,p-Adicnumbersinphysics,Phys.Rep.

233(1993)1.[3]V.S.Vladimirov,I.V.VolovichandE.I.Zelenov,p-Adicanalysisand

mathematicalphysics,WorldScientific,Singapore,1994.[4]L.Brekke,P.G.O.Freund,M.OlsonandE.Witten,Non-archimedean

stringdynamics,Nucl.Phys.B302(1988)365.[5]P.H.FramptonandY.Okada,Effectivescalarfieldtheoryofp-adic

string,Phys.Rev.D37(1988)3077;Thep-adicstringN-pointfunction,Phys.Rev.Lett.60(1988)484.[6]D.GhoshalandA.Sen,Tachyoncondensationandbranedescent

relationsinp-adicstringtheory,Nucl.Phys.B584(2000)300,hep-th/0003278.[7]J.A.Minahan,Modeinteractionsofthetachyoncondensateinp-adic

stringtheory,JHEP0103(2001)028,hep-th/0102071;A.Sen,Timeevolutioninopenstringtheory,JHEP0210(2002)003,hep-th/0207105;N.MoellerandB.Zwiebach,Dynamicswithinfinitelymanytimederiva-tivesandrollingtachyons,JHEP0210(2002)034,hep-th/0207107;H.Yang,Stresstensorsinp-adicstringtheoryandtruncatedOSFT,JHEP0211(2002)007;I.Ya.Aref’eva,L.V.JoukovskayaandA.S.Koshelev,TimeevolutioninsuperstringfieldtheoryonnonBPS-brane.I.Rollingtachyonandenergy-momentumconservation,JHEP0309(2003)012,hep-th/0301137.[8]D.GhoshalandT.Kawano,Towardsp-adicstringinconstantB-field,

Nucl.Phys.B710(2005)577,hep-th/0409311;P.Grange,Deformationofp-adicstringamplitudesinamagneticfield,Phys.Lett.B616(2005)135,hep-th/0409305.[9]B.DragovichandI.V.Volovich,p-Adicstringsandnoncommutativity,

in’NoncommutativeStructuresinMathematicsandPhysics’,eds.S.

8

DuplijandJ.Wess,KluwerAcad.Publishers(2001);D.Ghoshal,Ex-actnoncommutativesolitonsinp-adicstringsandBSFT,JHEP0009(2004)041,hep-th/0406259.

[10]V.S.VladimirovandYa.I.Volovich,Onthenonlineardynamicalequa-tioninthep-adicstringtheory,Theor.Math.Phys.138(2004)297,math-ph/0306018.[11]I.Ya.Aref’eva,Nonlocalstringtachyonasamodelforcosmologicaldark

energy,AIPConf.Proc.826(2006)301,astro-ph/0410443;N.Barnaby,T.BiswasandJ.M.Cline,p-Adicinflation,hep-th/0612230.[12]D.Ghoshal,p-Adicstringtheoriesprovidelatticediscretizationtothe

ordinarystringworldsheet,Phys.Rev.Lett.97(2006)151601.[13]B.Dragovich,Adelicmodelofharmonicoscillator,Theor.Math.Phys.

101(1994)1404;Adelicharmonicoscillator,Int.J.Mod.Phys.A10(1995)2349,hep-th/0404160.[14]I.YaAref’evaandI.V.Volovich,QuantizationoftheRiemannzeta-functionandcosmology,hep-th/0701284.[15]A.GerasimovandS.Shatashvilli,Onexacttachyonpotentialinopen

stringfieldtheory,JHEP10(2000)034,hep-th/0009103.[16]N.MoellerandM.Schnabl,Tachyoncondensationinopen-closedp-adic

stringtheory,hep-th/0304213.

9

因篇幅问题不能全部显示,请点此查看更多更全内容

Top