7002 raM 1 1v8003070/ht-pe:hviXraBrankoDragovich∗
InstituteofPhysics
Pregrevica118,P.O.Box57,11001Belgrade,Serbia
Abstract
Weintroducenonlinearscalarfieldmodelsforopenandopen-closedstringswithspacetimederivativesencodedintheoperatorval-uedRiemannzetafunction.ThecorrespondingtwoLagrangiansarederivedinanadelicapproachstartingfromtheexactLagrangiansforeffectivefieldsofp-adictachyonstrings.Asaresulttachyonsareab-sentinthesemodels.Thesenewstringsweproposetocallzetastrings.Somebasicclassicalpropertiesofthezetastringsareobtainedandpresentedinthispaper.
1Introduction
Therearejusttwentyyearsfromthepublicationofthefirstpaperonthep-adicstring[1].Sofarp-adicstructureshavebeenobservednotonlyinstringtheorybutalsoinmanyothermodelsofmodernmathematicalphysics(forareviewoftheearlydaysdevelopments,seee.g.[2],[3]).
Oneofthegreatestachievementsinp-adicstringtheoryisaneffectivefielddescriptionofscalaropenandclosedp-adicstrings[4],[5].ThecorrespondingLagrangiansareverysimpleandexact.Theydescribenotonlyfour-pointscatteringamplitudesbutalsoallhigheronesatthetree-level.
Thisp-adicstringtheoryhasbeensignificantlypushedforwardwhenwasshown[6]thatitdescribestachyoncondensationandbranedescentrelations
simplerthanbyordinarybosonicstrings.Afterthatsuccess,manyaspectsofp-adicstringdynamicshavebeeninvestigatedandcomparedwithdynamicsofordinarystrings(see,e.g.[7]andreferencestherein).Noncommutativede-formationofp-adicstringworld-sheetwithaconstantB-fieldwasinvestigatedin[8](onp-adicnoncommutativityseealso[9]).Asystematicmathematicalstudyofspatiallyhomogeneoussolutionsofthenonlinearequationofmo-tionwasperformedin[10].Somepossiblecosmologicalimplicationsofp-adicstringtheoryhavebeenalsoinvestigated[11].Itwasrecentlyproposed[12]thatp-adicstringtheoriesprovidelatticediscretizationtotheworld-sheetofordinarystrings.Asaresultofthesedevelopmentsmanynontrivialfea-turesofordinarystringtheoryhavebeenreproducedfromthep-adiceffectiveaction.
Adelicapproachtothestringscatteringamplitudesisaveryusefulwaytoconnectp-adicandordinarycounterparts(see[2]asareview).More-over,iteliminatesunwantedprimenumberparameterpcontainedinp-adicamplitudesandalsocurestheproblemofp-adiccausalityviolation.Adelicgeneralizationofquantummechanicswasalsosuccessfullyformulated,andwasfoundaconnectionbetweenadelicvacuumstateoftheharmonicoscil-latorandtheRiemannzetafunction[13].Recently,aninterestingapproachtowardfoundationofafieldtheoryandcosmologybasedontheRiemannzetafunctionwasproposedin[14].AnadelicapproachwiththeRiemannzetafunctionisoneofthemotivationsforthispaper.
Thepresentpaperisaresultoftheattempttointegrateallp-adiceffectivefieldactionsintoonebosonicfieldtheory.Inthenexttwosectionsweexplorethecasesofopenandopen-closedbosonicstrings.
2Openscalarzetastring
Theexacttree-levelLagrangianforeffectivescalarfieldϕwhichdescribesopenp-adicstringtachyonis
L1
p=
1p−1
−2
ϕ+
1
timederivativesfollowsfromtheexpansion
p
−
2
lnp
−lnp=
k≥0
k!
k.
Theequationofmotionfor(1)is
p−
n2
=
1
2
n−1
Ln
n+1
φ
n+1
φ
n≥1
n
−
,(3)
wherecoefficientsCn=
andCn=1,
butitseemstobelessnatural.Thusweretainthestringcouplingconstantg.ToemphasizethatLagrangian(3)describesanewfield,whichtakesintoaccountallp-adicfields,weintroducednotationφinsteadofϕ.ThetermC1L1=0,becauseofitstwoequalpartsofoppositesign,butthesepartsgivecontributiontokineticandpotentialtermsofthetotalLagrangianL.AccordingtothefamousEulerproductformulaonecanwrite
g2
g2
n2
n≥1
n−
1−p−
ζ(s)=
1
n≥1
1−
p−s
,s=σ+iτ,σ>1.(4)
Employingusualexpansionforthelogarithmicfunctionanddefinition(4)wecanrewrite(3)intheform
L=−
12φζ
2
actsaspseudodifferentialoperatorinthefollowingway(seealso
k2ζ−
[14]):ζ
(2π)D
e
ixk
2
φ=
1
2
˜(k)dk=φ
φ
g
[φ+ln(1−φ)]=−2
1
n
,(8)
4
whereV(φ)≤0for−1<φ<1:itincreasesfromV(φ→−1)=−0,31
2
φ(t)=
1
2+ε
e
−ik0t
ζ
k2
0
1−φ(t)
.(9)
Intheweakfieldapproximation(|φ(t)|≪1)theaboveexpressionφ/(1−φ)≈φand(9)becomesalinearequationwhichcanbewrittenintheform
k2
0−ik0t˜(k0)dk0=0,2−ε)−1φ(10)ζe
R
whereθistheHeavisidefunction.Sinceζ02the
˜(k0)=0.Thisalsomeanstheabsenceequation(10)hassolutiononlyforφ
ofmass.
k2
3Openandclosedscalarzetastrings
TheexactLagrangianforthecoupledopenandclosedp-adictachyonsispresentedin[2]anditreads
1p−11p2−1g2
111
11
−1)
L′p
=+
−
2
ϕ+
4
2
(ϕ
p+1
−
ψ+
Mp(ϕ,ψ)+
1
1
L′=
n2
Mn(φ,θ)+n4
Nn(θ)
=
1
2
φn−
+1
θ
n(n−1)
nh2
n≥1
−
1
4
θ+
1
g2
−
1
2
φ+
1
2
(φn+1
n≥1
−1)
+
1
2+1
2θζ
2+1
θ
n
n(13)
forthecoupledzetastringsφandθ,whichareopenandclosed,respectively.Theequationsofmotionare
ζ
(2π)D
eixkζ−k22φn,(14)ζ
ixk
k2(2π)D
e
ζ
−
+1)
θ
n(n−1)
2(n2
φ=φ,ζ
Thecorrespondingpotentialis
1
n≥1
n(n−1)
V(φ,θ)=
n+1
θ
1h2
References
[1]I.V.Volovich,p-Adicspace-timeandstringtheory,Theor.Math.Phys.
71(1987)340;seealsop-Adicstring,Class.QuantumGrav.4(1987)L83-L87.[2]l.BrekkeandP.G.O.Freund,p-Adicnumbersinphysics,Phys.Rep.
233(1993)1.[3]V.S.Vladimirov,I.V.VolovichandE.I.Zelenov,p-Adicanalysisand
mathematicalphysics,WorldScientific,Singapore,1994.[4]L.Brekke,P.G.O.Freund,M.OlsonandE.Witten,Non-archimedean
stringdynamics,Nucl.Phys.B302(1988)365.[5]P.H.FramptonandY.Okada,Effectivescalarfieldtheoryofp-adic
string,Phys.Rev.D37(1988)3077;Thep-adicstringN-pointfunction,Phys.Rev.Lett.60(1988)484.[6]D.GhoshalandA.Sen,Tachyoncondensationandbranedescent
relationsinp-adicstringtheory,Nucl.Phys.B584(2000)300,hep-th/0003278.[7]J.A.Minahan,Modeinteractionsofthetachyoncondensateinp-adic
stringtheory,JHEP0103(2001)028,hep-th/0102071;A.Sen,Timeevolutioninopenstringtheory,JHEP0210(2002)003,hep-th/0207105;N.MoellerandB.Zwiebach,Dynamicswithinfinitelymanytimederiva-tivesandrollingtachyons,JHEP0210(2002)034,hep-th/0207107;H.Yang,Stresstensorsinp-adicstringtheoryandtruncatedOSFT,JHEP0211(2002)007;I.Ya.Aref’eva,L.V.JoukovskayaandA.S.Koshelev,TimeevolutioninsuperstringfieldtheoryonnonBPS-brane.I.Rollingtachyonandenergy-momentumconservation,JHEP0309(2003)012,hep-th/0301137.[8]D.GhoshalandT.Kawano,Towardsp-adicstringinconstantB-field,
Nucl.Phys.B710(2005)577,hep-th/0409311;P.Grange,Deformationofp-adicstringamplitudesinamagneticfield,Phys.Lett.B616(2005)135,hep-th/0409305.[9]B.DragovichandI.V.Volovich,p-Adicstringsandnoncommutativity,
in’NoncommutativeStructuresinMathematicsandPhysics’,eds.S.
8
DuplijandJ.Wess,KluwerAcad.Publishers(2001);D.Ghoshal,Ex-actnoncommutativesolitonsinp-adicstringsandBSFT,JHEP0009(2004)041,hep-th/0406259.
[10]V.S.VladimirovandYa.I.Volovich,Onthenonlineardynamicalequa-tioninthep-adicstringtheory,Theor.Math.Phys.138(2004)297,math-ph/0306018.[11]I.Ya.Aref’eva,Nonlocalstringtachyonasamodelforcosmologicaldark
energy,AIPConf.Proc.826(2006)301,astro-ph/0410443;N.Barnaby,T.BiswasandJ.M.Cline,p-Adicinflation,hep-th/0612230.[12]D.Ghoshal,p-Adicstringtheoriesprovidelatticediscretizationtothe
ordinarystringworldsheet,Phys.Rev.Lett.97(2006)151601.[13]B.Dragovich,Adelicmodelofharmonicoscillator,Theor.Math.Phys.
101(1994)1404;Adelicharmonicoscillator,Int.J.Mod.Phys.A10(1995)2349,hep-th/0404160.[14]I.YaAref’evaandI.V.Volovich,QuantizationoftheRiemannzeta-functionandcosmology,hep-th/0701284.[15]A.GerasimovandS.Shatashvilli,Onexacttachyonpotentialinopen
stringfieldtheory,JHEP10(2000)034,hep-th/0009103.[16]N.MoellerandM.Schnabl,Tachyoncondensationinopen-closedp-adic
stringtheory,hep-th/0304213.
9
因篇幅问题不能全部显示,请点此查看更多更全内容