Jordan-Wignerfermions
arXiv:cond-mat/0111203v1 11 Nov 2001anisotropicXY(XZ)model.Wecompare
theresultsofdifferentapproachesfortheground-stateandthermodynamicpropertiesofthemodel.
2
PACSnumber(s):75.10.-bKeywords:square-latticespin-1
anisotropicXYmodelonaspatiallyanisotropicsquarelatticewithintheframeworkofthescheme
basedonthe2DJordan-Wignerfermionizationandcomparetheresultsderivedfortheground-stateandthermodynamicquantitieswiththeexactones(1Dlimit,square-latticeIsingmodel)andthepredictionsofotherapproximatetheories.Theperformedcalculationsyieldanimpressionabouttheregionofvalidityofsomeapproachesusuallyappliedforastudyofthermodynamicsof2Dquantumspinmodels.
WestartfromamodelofN→∞spins1
2
HereJandJ⊥=RJaretheexchangeinteractionsbetweentheneighbouringsitesinarowandacolumn,respectively(forconcretenessweassumebothtobepositive),andtheparameterγcontrolstheanisotropyoftheexchangeinteraction.Makinguseofthe2DJordan-Wignerfermionizationandadoptingamean-fieldtreatmentofthephasefactorswhichappearafterthefermionization[2,3]weperformconsequentlytheFourierandBogolyubovtransformationstoarriveatthefollowingHamiltonianofnoninteractingspinlessfermionswhichrepresenttheinitialspinmodel(1)
H=
2′k
+
Λα(k)ηk,αηk,α−
α=1
1
Λ2(k)=
(J⊥cosky+γJcoskx)2+(Jsinkx+γJ⊥sinky)2,
2β
π
dkx
2π
−π
βΛ1(k)
ln2cosh
2
(3)
yieldsthethermodynamicpropertiesofthespinmodel(1).InFig.1weplottheground-stateenergypersiteofthespinmodel(1),(2)(dottedcurves)incomparisonwiththeexactresultsifR=0(1DXYmodel)orγ=1(square-latticeIsingmodel)andthespin-wavetheoryresultforγ=0,R=1(spatiallyisotropicsquare-latticeisotropicXYmodel).Eq.(3)containstheexactresultin1Dlimit(Fig.1b),however,deviatesnoticeablyfromtheexactresultforγ=1(comparethecurves3inFig.1a).Forγ=0,R=1Eq.(3)yieldstheresultwhichdiffersfromthespin-wavetheorypredictiondenotedbythefullcircles.(Theoutcomesofdifferentnumericalapproaches(see[4])liewithinthefullcircles.)Fromtheexactcalculationforγ=1[5]weknowthatthetemperaturedependenceofthespecificheatexhibitsalogarithmicsingularity.Obviously,theJordan-Wignerfermions(2),(3)cannotreproducethispeculiarityinherentinthespinmodel.
Itisworthtoremindherethattheconventionalspin-wavetheorywasoriginallythoughttobeun-satisfactoryforquantumXYmodels[6].However,theauthorsofthepaper[7]showedthatconsideringtheXZratherthantheXYHamiltonianonegetswithinthespin-wavetheorysatisfactoryresultsofthesamequalityasfortheHeisenbergHamiltonian.Followingthisideaweperformtherotationofthespinaxessx→−sz,sy→sx,sz→−syandconsiderinsteadof(1)thefollowingHamiltonian
∞∞
xxzz
H=J(1−γ)si,jsi+1,j+(1+γ)si,jsi+1,j
i=0j=0
+J⊥
xzz
(1−γ)sx.i,jsi,j+1+(1+γ)si,jsi,j+1
(4)
Proceedingfurtherwith(4)inthedescribedabovemannerandassuming(forconcreteness)antiferromag-neticlong-rangeorderwhiledecouplingthequarticfermionicterms[8]wegetinsteadof(2)thefollowing
Hamiltonian
2′1+
Λα(k)ηkH=,αηk,α−
kα=1
A2+B2+C2+D2+M2±2
44
J⊥cosky,B=
1−γ1−γ
Jsinkx,D=
wheremisdeterminedself-consistentlybyminimizingtheHelmholtzfreeenergypersite
1∂Λ1(k)∂Λ2(k)
2(1+γ)(J+J⊥)m=+222(2π)
.(6)
InFig.2weplottheground-stateenergyofthespinmodel(4),(5),(6)(dashedcurves).TheresultsbasedonEqs.(5),(6)forγ=1reproducetheexactresultforsquare-latticeIsingmodel(curve3inFig.2a)aswellasthespin-wavetheorypredictionforγ=0,R=1.However,theresultbasedonEqs.(5),(6)forR=0doesnotcoincidewiththeexactonein1Dlimit(curve1inFig.2b).
Tosummarize,wehavecalculatedthethermodynamicquantitiesforthespin-1
anisotropicXYmodel(1)
e0vs.R(a)(1–γ=0,2–γ=0.5,3–γ=1)ande0vs.γ(b)(1–R=0,2–R=0.5,3–R=1);exactresults(solidcurves)andtheapproximateresultsobtainedonthebasisof(2)(dottedcurves);thefullcirclescorrespondtothespin-waveresultforγ=0,R=1.
2
FIGURE2.ThesameasinFig.1fortheXZHamiltonian(4);theapproximateresultsobtainedonthebasisof(5),(6)areshownbydashedcurves.
3
e0
-0.5a1233-1.00.40.8R e0
-0.5b123-1.00.40.8γFigure1:
4
e0
-0.5a123123-1.00.40.8Rb11223e0
-0.53-1.00.40.8γFigure2:
5
因篇幅问题不能全部显示,请点此查看更多更全内容