鸽巢原理的教学反思
教学内容:
《义务教育教科书 数学》(人教版)六年级下册第70-71页。
教材和学情分析:
1、理解教材:
在数学问题中,有一类与“存在性”有关的问题,如任意367名学生中,一定存在两名学生,他们在同一天过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。
本课时的教学内容为例1和例2。
例1介绍了较简单的“抽屉问题”:只要物体数比抽屉数多,总有一个抽屉里至少放进2个物体。它意图让学生发现这样的一种存在现象:不管怎样放,总有一个杯子里至少放进2根小棒。例1呈现的是2种思维方法:一是枚举法,罗列了摆放的所有情况。二是假设法,用平均分的方法直接考虑“至少”的情况。通过例1两个层次的探究,让学生理解“平均分”的方法能保证“至少”的情况,能用这种方法在简单的具体问题中解释证明。
例2在例1的基础上说明:只要物体数比抽屉数多,总有一个抽屉里至少放进(商+1)个物体。因此我认为例2的目的是使学生进一步理解“尽量平均分”,能用有余数的除法
算式表示思维的过程。
2、分析学生:
通过调查,发现有相当多的学生以前的奥数班已经解除了抽屉原理,他们在具体分得过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。
还有部分学生完全没有接触,所以他们可能会认为至少的情况就应该是“1”。
设计理念:
1、用具体的操作,将抽象变为直观。
“总有一个笔筒中至少放进3枝笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”,二在操作中理解“平均分”是保证“至少”的最好方法。通过操作,最直观地呈现“总有一个笔筒中至少放进3枝笔”这种现象,让学生理解这句话。
2、充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。
学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生手去认识,而是创造条件,让学生自己去探索,发现。所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。
3、适当把握教学要求。
我们在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“抽屉”和“物体”。
因篇幅问题不能全部显示,请点此查看更多更全内容