南京市联合体2020年初中毕业生二模考试卷
数学
注意事项:
1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.
2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.
3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.
4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有
一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) .......1.下列计算中,结果是a5的是
A.a2+a3
B.a2·a3
C.a10÷a2
D.(a2)3
2.面积为4的正方形的边长是
A.2的平方根
B.4的平方根
C.2的算术平方根 D.4的算术平方根
3.若1<a<2,则a可以是
A.1
B.3
C.5
D.7
4.已知一组数据5,6,7,8,9,5,9,若增加一个数7,则新的这组数据与原来相比
A.平均数变大,方差变大 C.平均数不变,方差变小
C.平均数不变,方差变大 D.平均数不变,方差不变
⌒
5.如图,PQ、PB、QC是⊙O的切线,切点分别为A、B、C,点D在BC上,若∠D=100°,则∠P与∠Q的度数之和是 A.160°
B.140°
C.120°
D.100°
D A' B C B
O
A C Q A P B' (第6题) (第5题)
6. 如图,在△ABC中,∠ACB=90°,BC=2,∠A=30°,将△ABC绕点C顺时针旋转120°, 若P为AB上一动点,旋转后点P的对应点为点P',则线段PP'长度的最小值是
A.3
B.2 C.3
D.23
二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) .......
第 1 页 共 10 页
7.计算:|-3|=▲;(-3)2=▲.
x
8.若式子在实数范围内有意义,则x的取值范围是 ▲ .
x-1
9.某病毒的直径约为0.000 000 1米,用科学记数法表示0.000 000 1是 ▲ . 10.设x1、x2是方程x2+mx+3=0的两个根,且x1+x2-x1x2=1,则m= ▲ . 11.已知圆锥的底面半径为3cm,高为4cm,则其侧面积是 ▲ cm2.(结果保留π) 12.计算(8-3)8+(8-3)3的结果是 ▲ .
13.如图,在矩形ABCD中,AB=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,若
BE=EO,则AD的长是 ▲ .
O E B
(第13题)
C (第16题) B A A
D
O C 14.用举反例的方法说明命题“若a<b,则ab<b2”是假命题,这个反例可以是a= ▲ ,
b= ▲ .
15.已知一次函数y1=x+2与y2=-x+b(b为常数),当x<1时,y1<y2.则b的取值范围
是 ▲ . 3
16. 如图,⊙O是△ABC的外接圆,BC=10,∠B=45°,tan C=,则⊙O的半径是 ▲ .
2三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说.......明、证明过程或演算步骤)
a2-4a+2a217.(6分)计算(2)-)÷.
a-4a+4a-2a-2
-1-x≤0,
x并写出它的正整数解. 18.(6分)解不等式组x+1-1<,32
第 2 页 共 10 页
19.(8分)为了解九年级女生体质健康变化的情况,体育李老师本学期从九年级全体240名
女生中随机抽取20名女生进行体质测试,并调取这20名女生上学期的体质测试成绩进行对比,李老师对两次数据(成绩)进行整理、描述和分析.下面给出了部分信息.
a. 两次测试成绩(百分制)的频数分布直方图如下(数据分组:60≤x<70,70≤x<80,80≤x<90,90≤x≤100):
(学生人数) 上学期测试成绩频数分布直方图
频数 (学生人数)
本学期测试成绩频数分布直方图
频数
8 7 6 5 4 3 2 1 0 60 70 8090 100 成绩/分
8 7 6 5 4 3 2 1 0 60 7080 90 100 成绩/分
b.成绩在80≤x<90的是:
上学期:80 81 85 85 85 86 88 本学期:80 82 83 86 86 86 88 89
c. 两个学期样本测试成绩的平均数、中位数、众数如下:
学期 上学期 本学期 根据以上信息,回答下列问题: (1)表中a的值是 ▲ ;
(2)下列关于本学期样本测试成绩的结论:①c=86;②d=86;③成绩的极差可能为41;
④b有可能等于80.其中所有正确结论的序号是 ▲ ;
(3)从两个不同角度分析这20名女生从上学期到本学期体质健康变化情况.
平均数 84 b 中位数 a c 众数 85 d 第 3 页 共 10 页
20.(8分)经过某路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小
相同,现有甲、乙、丙三辆汽车经过这个路口. (1)求甲、乙两辆汽车向同一方向行驶的概率;
(2)甲、乙、丙三辆汽车向同一方向行驶的概率是▲.
21.(8分)如图,在ABCD中,AC的垂直平分线分别交BC、AD于点E、F,垂足为O,连接AE、CF. (1)求证:四边形AECF为菱形;
(2)若AB=5,BC=7,则AC=▲时,四边形AECF为正方形.
22.(7分)某超市一种品牌的洗手液一月份的销售总额为8 000元,受2019-nCoV疫情影响,
二月份该超市对此品牌洗手液进行调价,每瓶单价是原来的1.5倍,但销售量仍比一月份增加了1000瓶,二月份的销售额达到了36 000元.该超市这种品牌的洗手液一月份的销售单价是多少元?
23.(8分)如图,为了测量建筑物CD、EF的高度,在直线CE上选取观测点A、B,AC的距
离为40米.从A、B测得建筑物的顶部D的仰角分别为51.34°、68.20°,从B、D测得建筑物的顶部F的仰角分别为64.43°、26.57°. (1)求建筑物CD的高度;
(2)求建筑物EF的高度.
(参考数据:tan51.34°≈1.25,tan68.20°≈2.5,tan64.43°≈2,tan26.57°≈0.5)
B E (第21题)
O
C A
F
D
第 4 页 共 10 页
24.(9分)某观光湖风景区,一观光轮与一巡逻艇同时从甲码头出发驶往乙码头,巡逻艇匀
速往返于甲、乙两个码头之间,当观光轮到达乙码头时,巡逻艇也同时到达乙码头.设出发x h后,观光轮、巡逻艇离甲码头的距离分别为y1 km、y2 km.图中的线段OG、折线OABCDEFG分别表示y1、y2 与x之间的函数关系. (1)观光轮的速度是▲km/h,巡逻艇的速度是▲km/h; (2)求整个过程中观光轮与巡逻艇的最大距离;
(3)求整个过程中观光轮与巡逻艇相遇的最短时间间隔.
25.(9分)在正方形ABCD中,点E是BC边上一动点,连接AE,沿AE将△ABE翻折得 △AGE,连接DG,作△AGD的外接⊙O,⊙O交AE于点F,连接FG、FD. (1)求证∠AGD=∠EFG; (2)求证△ADF∽△EGF;
(3)若AB=3,BE=1,求⊙O的半径.
第 5 页 共 10 页
O y/km 32 A C E G B D F 2 x/h (第24题)
26.(9分) 【概念认识】
若以圆的直径的两个端点和圆外一点为顶点的三角形是等腰三角形,则圆外这一点称为这个圆的径等点. 【数学理解】
(1)如图①,AB是⊙O的直径,点P为⊙O外一点,连接AP交⊙O于点C,PC=AC.
求证:点P为⊙O的径等点.
A C P O B ①
(2)已知AB是⊙O的直径,点P为⊙O的径等点,连接AP交⊙O于点C,若PC=2AC.
求 【问题解决】
(3)如图②,已知AB是⊙O的直径.若点P为⊙O的径等点,连接AP交⊙O于点C,
PC=3AC.利用直尺和圆规作出所有满足条件的点P.(保留作图痕迹,不写作法)
A A A O O O
B B B
② (备用) (备用)
27.(10分)已知二次函数y=m(x-1)(x-m-3)(m为常数,且m≠0). (1)求证:不论m为何值,该函数的图像与x轴总有公共点;
(2)设该函数的图像与y轴交于点A,若点A在x轴上方,求m的取值范围;
(3)该函数图像所过的象限随m的值变化而变化,直接写出函数图像所经过的象限及对应
的m的取值范围.
第 6 页 共 10 页
AC
的值. AB
南京市2020年初中毕业生二模考试卷
数学试卷参考答案及评分标准
说明:本评分标准每题给出了一种或几种解法供参考.如果考生的解法与本解答不同,参照本评分标准的精神给分.
一、选择题(本大题共6小题,每小题2分,共12分)
题号 1 2 3 4 5 6
答案 B D B C A C
二、填空题(本大题共10小题,每小题2分,共20分)
-
7.3,3. 8.x≠1. 9.1×107 10.-4. 11.15π. 12.5. -1,0(答案不唯一). 15.b≥4. 13.63. 14.16.26. 三、解答题(本大题共11小题,共88分) 17.(本题6分)
(a+2)(a-2)
解:原式=(-)· ···································································· 4分
(a-2)2
(a-2)a
=·· ·············································································· 5分
a-2 a (a+2)1= ···························································································· 6分 a+218.(本题6分)
解:解不等式①,得x≥-1, ······································································ 2分
解不等式②,得x<3. ········································································· 4分
∴原不等式组的解集为-1≤x<3, ···························································· 5分
正整数解有:1,2. ············································································· 6分
19.(本题8分)
解:(1)80.5; ··················································································· 2分 (2)①; ··························································································· 4分 (3)答案不唯一.如:从中位数上看,由上学期的80.5分到本学期的86分,一半以上
的女生体质情况有较大提升;从成绩达到80分的女生数上看,本学期比上学期增加3人,且90分以上多2人,体质训练有效果. ······································ 8分
20.(本题8分)
解:(1)所有可能出现的结果有:(直行,直行)、(直行,左转)、(直行,右转)、(左转,直行)、(左转,左转)、(左转,右转)、(右转,直行)、(右转,左转)、(右转,右转)共9种,它们出现的可能性相同.所有的结果中,满足“同一方向行驶”
31
(记为事件A)的结果有3种,所以P(A)==. ············································ 6分
93
1(2). ······························································································· 8分.
921.(本题8分)
(1)证明:∵四边形ABCD是平行四边形, ∴AD∥BC, ∴∠1=∠2,
∵EF垂直平分AC, ∴AF=CF,AE=CE,
A
1 O 2
C (第21题)
第 7 页 共 10 页
F
D
3 B E
∴∠2=∠3, ∴∠1=∠3, ∴AE=AF,
∴AE=AF=CE=CF, ∴四边形AECF是菱形. ················································································ 6分 (2)32或42. ··························································································· 8分 22.(本题7分)
解:设一月份的销售单价为x元. ······························································· 1分 8 00036 000根据题意,得: +1 000=. ························································ 5分
x1.5 x解得x=16. ··························································································· 6分
经检验,x=16是所列方程的解. 答:一月份的销售单价为16元. ································································ 7分 23.(本题8分)
解:(1)在Rt△ACD中,∠ACD=90°,
CD
∵tan∠DAC=,
AC∴CD=AC·tan51.34°≈40×1.25=50. ························································· 3分 (2)过点D作DG⊥EF于点G . 在Rt△BCD中,∠BCD=90°,
CD
∵tan∠DBC=,
BCCD50
∴BC=≈=20. ········································································ 4分
tan68.20°2.5
易证矩形DCEG,
∴CD=EG=50,DG=CE. 设EF=x米.
在Rt△DFG中,∠DGF=90°,
FG
∵tan∠FDG=,
DGx-50
∴DG=, ···················································································· 5分
tan26.57°
在Rt△FBE中,∠BEF=90°,
EF
∵tan∠FBE=,
BEx
∴BE=, ···················································································· 6分
tan64.43°∴
x-50x
=20+, ······································································ 7分
tan26.57°tan64.43°
∴x≈80. ······························································································· 8分 答:建筑物CD的高度为50米,建筑物EF的高度为80米.
24.(本题9分)
解:(1)观光轮16 km/h,巡逻艇112 km/h; ··············································· 2分 32192
(2)最大距离:32-16×=km; ························································ 5分
11271
(3)由题意可得:16x+112x=32×2,解得x=;·········································· 7分
2
第 8 页 共 10 页
4
线段BC所表示的函数表达式为yBC=112(x-)=112x-64,y1=16x,
7
2211
当y1=yBC时,112x-64=16x,解得x=,-=. ······························· 9分
33261
答:最短时间间隔为 h;
6
25.(本题9分)
(1)证明:∵四边形AFGD是⊙O的内接四边形, ∴∠ADG+∠AFG=180°, ∵∠AFG+∠EFG=180°, ∴∠ADG=∠EFG,
D 由正方形ABCD及翻折可得AB=AG=AD, A ∴∠ADG=∠AGD, ∴∠AGD=∠EFG. ··················································································· 3分 O (2)∵∠AGD=∠AFD,∠AGD=∠EFG, ∴∠AFD=∠EFG, H ∵四边形ABCD是正方形,
F ∴AD∥BC. G ∴∠DAF=∠AEB.
E C B 由翻折得∠AEB=∠GEF,
(第25题)
∴∠DAF=∠GEF, ∴△ADF∽△EGF. ··················································································· 6分 (3)解:设⊙O与CD交于点H,连接AH、GH, ∵∠ADH=90°,
∴AH是⊙O的直径, ∴∠AGH=90°,
由翻折得∠AGE=90°,则∠AGE+∠AGH=180°, ∴E、G、H三点在一条直线上. ································································· 7分 ∵AH=AH,AD=AG,∴Rt△ADH≌Rt△AGH,∴GH=DH,
设GH=DH=x,则在Rt△ECH中,CH=3-x,EH=1+x,EC=3-1=2,
3
由CH2+EC2=EH2,即(3-x)2+22=(1+x)2,解得x=, ································ 8分
2
33
在Rt△ADH中,AD2+DH2=AH2,即32+()2=AH2,解得AH=5,
22
3
∴⊙O的半径为5. ··············································································· 9分
4
A C 26.(本题9分) P (1)证明:如图①,连接BC, ∵AB是⊙O的直径, ∴∠ACB=90°, O ∵AC=PC,
∴BC垂直平分AP,
B ∴AB=PB,即△APB为等腰三角形,
① ∴点P为⊙O的径等点. ·························· 3分 AC1AC1
(2)①如图②-1,当AB=AP时,若PC=2AC,则=,∴=; ····················· 4分
AP3AB3②如图②-2,当PA=PB时,易证△ABC∽△APO,∴
ACAB
=, AOAP
第 9 页 共 10 页
kABAC16
∵2AC=PC,设AC=k,则PC=2k,∴=,AB=6k,∴==. ··· 6分
13kAB66AB2
C C A A
O O
B B ②-2 ②-1
(3)如图③④,满足条件的点P共有4个. ·················································· ····· 9分
P1 P3
C C
A A
O O
B B
④ ③ P2
27.(本题10分) P4 (1)证明:当y=0时,m(x-1)(x-m-3)=0, 解得x1=1,x2=m+3, 当m+3=1,即m=-2时,方程有两个相等的实数根; 当m+3≠1,即m≠-2时,方程有两个不相等的实数根, ∴不论m为何值,该函数的图像与x轴总有公共点; ········································ 3分 (2)当x=0时,y=m2+3m, ····································································· 4分
∴点A的纵坐标为m2+3m,
∵该函数的图像与y轴交于点A,点A在x轴上方, ∴m2+3m>0.
设z=m2+3m,即z是m的二次函数,当m=0或-3时,z=0. ∵抛物线开口向上,
∴当m>0或m<-3时,z>0.
∴m的取值范围是m>0或m<-3.……………………………………………………6分 (3)①当m>0时,图像经过一、二、四象限; ·············································· 7分
②当-2<m<0或-3≤m<-2时,图像经过一、三、四象限; 也可写成:当-3<m<0(m≠-2)时,图像经过一、三、四象限; ·············· 8分 ③当m=-2时,图像经过三、四象限;··················································· 9分 ④当m<-3时,图像经过一、二、三、四象限. ···································· 10分
P P
第 10 页 共 10 页
因篇幅问题不能全部显示,请点此查看更多更全内容