您好,欢迎来到小侦探旅游网。
搜索
您的当前位置:首页江苏省南京市2020年九年级中考数学模拟试卷(含答案)

江苏省南京市2020年九年级中考数学模拟试卷(含答案)

来源:小侦探旅游网


南京市联合体2020年初中毕业生二模考试卷

数学

注意事项:

1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.

2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.

3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.

4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.

一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有

一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) .......1.下列计算中,结果是a5的是

A.a2+a3

B.a2·a3

C.a10÷a2

D.(a2)3

2.面积为4的正方形的边长是

A.2的平方根

B.4的平方根

C.2的算术平方根 D.4的算术平方根

3.若1<a<2,则a可以是

A.1

B.3

C.5

D.7

4.已知一组数据5,6,7,8,9,5,9,若增加一个数7,则新的这组数据与原来相比

A.平均数变大,方差变大 C.平均数不变,方差变小

C.平均数不变,方差变大 D.平均数不变,方差不变

5.如图,PQ、PB、QC是⊙O的切线,切点分别为A、B、C,点D在BC上,若∠D=100°,则∠P与∠Q的度数之和是 A.160°

B.140°

C.120°

D.100°

D A' B C B

O

A C Q A P B' (第6题) (第5题)

6. 如图,在△ABC中,∠ACB=90°,BC=2,∠A=30°,将△ABC绕点C顺时针旋转120°, 若P为AB上一动点,旋转后点P的对应点为点P',则线段PP'长度的最小值是

A.3

B.2 C.3

D.23

二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) .......

第 1 页 共 10 页

7.计算:|-3|=▲;(-3)2=▲.

x

8.若式子在实数范围内有意义,则x的取值范围是 ▲ .

x-1

9.某病毒的直径约为0.000 000 1米,用科学记数法表示0.000 000 1是 ▲ . 10.设x1、x2是方程x2+mx+3=0的两个根,且x1+x2-x1x2=1,则m= ▲ . 11.已知圆锥的底面半径为3cm,高为4cm,则其侧面积是 ▲ cm2.(结果保留π) 12.计算(8-3)8+(8-3)3的结果是 ▲ .

13.如图,在矩形ABCD中,AB=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,若

BE=EO,则AD的长是 ▲ .

O E B

(第13题)

C (第16题) B A A

D

O C 14.用举反例的方法说明命题“若a<b,则ab<b2”是假命题,这个反例可以是a= ▲ ,

b= ▲ .

15.已知一次函数y1=x+2与y2=-x+b(b为常数),当x<1时,y1<y2.则b的取值范围

是 ▲ . 3

16. 如图,⊙O是△ABC的外接圆,BC=10,∠B=45°,tan C=,则⊙O的半径是 ▲ .

2三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说.......明、证明过程或演算步骤)

a2-4a+2a217.(6分)计算(2)-)÷.

a-4a+4a-2a-2

-1-x≤0,

x并写出它的正整数解. 18.(6分)解不等式组x+1-1<,32

第 2 页 共 10 页

19.(8分)为了解九年级女生体质健康变化的情况,体育李老师本学期从九年级全体240名

女生中随机抽取20名女生进行体质测试,并调取这20名女生上学期的体质测试成绩进行对比,李老师对两次数据(成绩)进行整理、描述和分析.下面给出了部分信息.

a. 两次测试成绩(百分制)的频数分布直方图如下(数据分组:60≤x<70,70≤x<80,80≤x<90,90≤x≤100):

(学生人数) 上学期测试成绩频数分布直方图

频数 (学生人数)

本学期测试成绩频数分布直方图

频数

8 7 6 5 4 3 2 1 0 60 70 8090 100 成绩/分

8 7 6 5 4 3 2 1 0 60 7080 90 100 成绩/分

b.成绩在80≤x<90的是:

上学期:80 81 85 85 85 86 88 本学期:80 82 83 86 86 86 88 89

c. 两个学期样本测试成绩的平均数、中位数、众数如下:

学期 上学期 本学期 根据以上信息,回答下列问题: (1)表中a的值是 ▲ ;

(2)下列关于本学期样本测试成绩的结论:①c=86;②d=86;③成绩的极差可能为41;

④b有可能等于80.其中所有正确结论的序号是 ▲ ;

(3)从两个不同角度分析这20名女生从上学期到本学期体质健康变化情况.

平均数 84 b 中位数 a c 众数 85 d 第 3 页 共 10 页

20.(8分)经过某路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小

相同,现有甲、乙、丙三辆汽车经过这个路口. (1)求甲、乙两辆汽车向同一方向行驶的概率;

(2)甲、乙、丙三辆汽车向同一方向行驶的概率是▲.

21.(8分)如图,在ABCD中,AC的垂直平分线分别交BC、AD于点E、F,垂足为O,连接AE、CF. (1)求证:四边形AECF为菱形;

(2)若AB=5,BC=7,则AC=▲时,四边形AECF为正方形.

22.(7分)某超市一种品牌的洗手液一月份的销售总额为8 000元,受2019-nCoV疫情影响,

二月份该超市对此品牌洗手液进行调价,每瓶单价是原来的1.5倍,但销售量仍比一月份增加了1000瓶,二月份的销售额达到了36 000元.该超市这种品牌的洗手液一月份的销售单价是多少元?

23.(8分)如图,为了测量建筑物CD、EF的高度,在直线CE上选取观测点A、B,AC的距

离为40米.从A、B测得建筑物的顶部D的仰角分别为51.34°、68.20°,从B、D测得建筑物的顶部F的仰角分别为64.43°、26.57°. (1)求建筑物CD的高度;

(2)求建筑物EF的高度.

(参考数据:tan51.34°≈1.25,tan68.20°≈2.5,tan64.43°≈2,tan26.57°≈0.5)

B E (第21题)

O

C A

F

D

第 4 页 共 10 页

24.(9分)某观光湖风景区,一观光轮与一巡逻艇同时从甲码头出发驶往乙码头,巡逻艇匀

速往返于甲、乙两个码头之间,当观光轮到达乙码头时,巡逻艇也同时到达乙码头.设出发x h后,观光轮、巡逻艇离甲码头的距离分别为y1 km、y2 km.图中的线段OG、折线OABCDEFG分别表示y1、y2 与x之间的函数关系. (1)观光轮的速度是▲km/h,巡逻艇的速度是▲km/h; (2)求整个过程中观光轮与巡逻艇的最大距离;

(3)求整个过程中观光轮与巡逻艇相遇的最短时间间隔.

25.(9分)在正方形ABCD中,点E是BC边上一动点,连接AE,沿AE将△ABE翻折得 △AGE,连接DG,作△AGD的外接⊙O,⊙O交AE于点F,连接FG、FD. (1)求证∠AGD=∠EFG; (2)求证△ADF∽△EGF;

(3)若AB=3,BE=1,求⊙O的半径.

第 5 页 共 10 页

O y/km 32 A C E G B D F 2 x/h (第24题)

26.(9分) 【概念认识】

若以圆的直径的两个端点和圆外一点为顶点的三角形是等腰三角形,则圆外这一点称为这个圆的径等点. 【数学理解】

(1)如图①,AB是⊙O的直径,点P为⊙O外一点,连接AP交⊙O于点C,PC=AC.

求证:点P为⊙O的径等点.

A C P O B ①

(2)已知AB是⊙O的直径,点P为⊙O的径等点,连接AP交⊙O于点C,若PC=2AC.

求 【问题解决】

(3)如图②,已知AB是⊙O的直径.若点P为⊙O的径等点,连接AP交⊙O于点C,

PC=3AC.利用直尺和圆规作出所有满足条件的点P.(保留作图痕迹,不写作法)

A A A O O O

B B B

② (备用) (备用)

27.(10分)已知二次函数y=m(x-1)(x-m-3)(m为常数,且m≠0). (1)求证:不论m为何值,该函数的图像与x轴总有公共点;

(2)设该函数的图像与y轴交于点A,若点A在x轴上方,求m的取值范围;

(3)该函数图像所过的象限随m的值变化而变化,直接写出函数图像所经过的象限及对应

的m的取值范围.

第 6 页 共 10 页

AC

的值. AB

南京市2020年初中毕业生二模考试卷

数学试卷参考答案及评分标准

说明:本评分标准每题给出了一种或几种解法供参考.如果考生的解法与本解答不同,参照本评分标准的精神给分.

一、选择题(本大题共6小题,每小题2分,共12分)

题号 1 2 3 4 5 6

答案 B D B C A C

二、填空题(本大题共10小题,每小题2分,共20分)

7.3,3. 8.x≠1. 9.1×107 10.-4. 11.15π. 12.5. -1,0(答案不唯一). 15.b≥4. 13.63. 14.16.26. 三、解答题(本大题共11小题,共88分) 17.(本题6分)

(a+2)(a-2)

解:原式=(-)· ···································································· 4分

(a-2)2

(a-2)a

=·· ·············································································· 5分

a-2 a (a+2)1= ···························································································· 6分 a+218.(本题6分)

解:解不等式①,得x≥-1, ······································································ 2分

解不等式②,得x<3. ········································································· 4分

∴原不等式组的解集为-1≤x<3, ···························································· 5分

正整数解有:1,2. ············································································· 6分

19.(本题8分)

解:(1)80.5; ··················································································· 2分 (2)①; ··························································································· 4分 (3)答案不唯一.如:从中位数上看,由上学期的80.5分到本学期的86分,一半以上

的女生体质情况有较大提升;从成绩达到80分的女生数上看,本学期比上学期增加3人,且90分以上多2人,体质训练有效果. ······································ 8分

20.(本题8分)

解:(1)所有可能出现的结果有:(直行,直行)、(直行,左转)、(直行,右转)、(左转,直行)、(左转,左转)、(左转,右转)、(右转,直行)、(右转,左转)、(右转,右转)共9种,它们出现的可能性相同.所有的结果中,满足“同一方向行驶”

31

(记为事件A)的结果有3种,所以P(A)==. ············································ 6分

93

1(2). ······························································································· 8分.

921.(本题8分)

(1)证明:∵四边形ABCD是平行四边形, ∴AD∥BC, ∴∠1=∠2,

∵EF垂直平分AC, ∴AF=CF,AE=CE,

A

1 O 2

C (第21题)

第 7 页 共 10 页

F

D

3 B E

∴∠2=∠3, ∴∠1=∠3, ∴AE=AF,

∴AE=AF=CE=CF, ∴四边形AECF是菱形. ················································································ 6分 (2)32或42. ··························································································· 8分 22.(本题7分)

解:设一月份的销售单价为x元. ······························································· 1分 8 00036 000根据题意,得: +1 000=. ························································ 5分

x1.5 x解得x=16. ··························································································· 6分

经检验,x=16是所列方程的解. 答:一月份的销售单价为16元. ································································ 7分 23.(本题8分)

解:(1)在Rt△ACD中,∠ACD=90°,

CD

∵tan∠DAC=,

AC∴CD=AC·tan51.34°≈40×1.25=50. ························································· 3分 (2)过点D作DG⊥EF于点G . 在Rt△BCD中,∠BCD=90°,

CD

∵tan∠DBC=,

BCCD50

∴BC=≈=20. ········································································ 4分

tan68.20°2.5

易证矩形DCEG,

∴CD=EG=50,DG=CE. 设EF=x米.

在Rt△DFG中,∠DGF=90°,

FG

∵tan∠FDG=,

DGx-50

∴DG=, ···················································································· 5分

tan26.57°

在Rt△FBE中,∠BEF=90°,

EF

∵tan∠FBE=,

BEx

∴BE=, ···················································································· 6分

tan64.43°∴

x-50x

=20+, ······································································ 7分

tan26.57°tan64.43°

∴x≈80. ······························································································· 8分 答:建筑物CD的高度为50米,建筑物EF的高度为80米.

24.(本题9分)

解:(1)观光轮16 km/h,巡逻艇112 km/h; ··············································· 2分 32192

(2)最大距离:32-16×=km; ························································ 5分

11271

(3)由题意可得:16x+112x=32×2,解得x=;·········································· 7分

2

第 8 页 共 10 页

4

线段BC所表示的函数表达式为yBC=112(x-)=112x-64,y1=16x,

7

2211

当y1=yBC时,112x-64=16x,解得x=,-=. ······························· 9分

33261

答:最短时间间隔为 h;

6

25.(本题9分)

(1)证明:∵四边形AFGD是⊙O的内接四边形, ∴∠ADG+∠AFG=180°, ∵∠AFG+∠EFG=180°, ∴∠ADG=∠EFG,

D 由正方形ABCD及翻折可得AB=AG=AD, A ∴∠ADG=∠AGD, ∴∠AGD=∠EFG. ··················································································· 3分 O (2)∵∠AGD=∠AFD,∠AGD=∠EFG, ∴∠AFD=∠EFG, H ∵四边形ABCD是正方形,

F ∴AD∥BC. G ∴∠DAF=∠AEB.

E C B 由翻折得∠AEB=∠GEF,

(第25题)

∴∠DAF=∠GEF, ∴△ADF∽△EGF. ··················································································· 6分 (3)解:设⊙O与CD交于点H,连接AH、GH, ∵∠ADH=90°,

∴AH是⊙O的直径, ∴∠AGH=90°,

由翻折得∠AGE=90°,则∠AGE+∠AGH=180°, ∴E、G、H三点在一条直线上. ································································· 7分 ∵AH=AH,AD=AG,∴Rt△ADH≌Rt△AGH,∴GH=DH,

设GH=DH=x,则在Rt△ECH中,CH=3-x,EH=1+x,EC=3-1=2,

3

由CH2+EC2=EH2,即(3-x)2+22=(1+x)2,解得x=, ································ 8分

2

33

在Rt△ADH中,AD2+DH2=AH2,即32+()2=AH2,解得AH=5,

22

3

∴⊙O的半径为5. ··············································································· 9分

4

A C 26.(本题9分) P (1)证明:如图①,连接BC, ∵AB是⊙O的直径, ∴∠ACB=90°, O ∵AC=PC,

∴BC垂直平分AP,

B ∴AB=PB,即△APB为等腰三角形,

① ∴点P为⊙O的径等点. ·························· 3分 AC1AC1

(2)①如图②-1,当AB=AP时,若PC=2AC,则=,∴=; ····················· 4分

AP3AB3②如图②-2,当PA=PB时,易证△ABC∽△APO,∴

ACAB

=, AOAP

第 9 页 共 10 页

kABAC16

∵2AC=PC,设AC=k,则PC=2k,∴=,AB=6k,∴==. ··· 6分

13kAB66AB2

C C A A

O O

B B ②-2 ②-1

(3)如图③④,满足条件的点P共有4个. ·················································· ····· 9分

P1 P3

C C

A A

O O

B B

④ ③ P2

27.(本题10分) P4 (1)证明:当y=0时,m(x-1)(x-m-3)=0, 解得x1=1,x2=m+3, 当m+3=1,即m=-2时,方程有两个相等的实数根; 当m+3≠1,即m≠-2时,方程有两个不相等的实数根, ∴不论m为何值,该函数的图像与x轴总有公共点; ········································ 3分 (2)当x=0时,y=m2+3m, ····································································· 4分

∴点A的纵坐标为m2+3m,

∵该函数的图像与y轴交于点A,点A在x轴上方, ∴m2+3m>0.

设z=m2+3m,即z是m的二次函数,当m=0或-3时,z=0. ∵抛物线开口向上,

∴当m>0或m<-3时,z>0.

∴m的取值范围是m>0或m<-3.……………………………………………………6分 (3)①当m>0时,图像经过一、二、四象限; ·············································· 7分

②当-2<m<0或-3≤m<-2时,图像经过一、三、四象限; 也可写成:当-3<m<0(m≠-2)时,图像经过一、三、四象限; ·············· 8分 ③当m=-2时,图像经过三、四象限;··················································· 9分 ④当m<-3时,图像经过一、二、三、四象限. ···································· 10分

P P

第 10 页 共 10 页

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- xiaozhentang.com 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务