您好,欢迎来到小侦探旅游网。
搜索
您的当前位置:首页New Families of Copulas Based on Periodic Functions, in Communications in Statistics Theory

New Families of Copulas Based on Periodic Functions, in Communications in Statistics Theory

来源:小侦探旅游网
NewfamiliesofCopulasbasedonperiodicfunctions

Aur´elienAlfonsi∗

DamianoBrigo∗∗

CERMICS,EcoleNationaledesPontsetChauss´ees,6-8avenueBlaisePascal,Cit´e

Descartes,ChampssurMarne,77455Marne-la-vall´ee,France.e-mail:alfonsi@cermics.enpc.fr

∗∗

CreditModels,BancaIMI,SanPaoloIMIGroup,CorsoMatteotti6–20121Mi-

lano,Italy;Fax:+390276019324.e-mail:damiano.brigo@bancaimi.it,webpage:http://www.damianobrigo.it

Firstversion:April1,2003.Thisversion:January30,2004

Abstract

Althoughthereexistsalargevarietyofcopulafunctions,onlyafewarepracticallymanageable,andoftenthechoiceindependencemodelingfallsontheGaussiancopula.Further,mostcopulasareexchangeable,thusimplyingsymmetricdependence.Weintroduceawaytoconstructcopulasbasedonperiodicfunctions.Westudythetwo-dimensionalcasebasedononedepen-denceparameterandthenprovideawaytoextendtheconstructiontothen-dimensionalframework.Wecanthusconstructfamiliesofcopulasindimen-sionnandparameterizedbyn−1parameters,implyingpossiblyasymmetricrelations.Such“periodic”copulascanbesimulatedeasily.

Keywords:DependenceModeling,CopulaFunctions,GaussianCopula,ArchimedeanCopula,PeriodicCopula,Simulation

NewfamiliesofCopulasbasedonperiodicfunctions

2

1IntroductionandMotivation

ConsiderarandomvectorX=(X1,...,Xn),andsupposethatwewishtoanalyzethedependencebetweenitscomponents.ThewholeinformationonthedistributionofthevectorisgivenbythejointcumulativedistributionfunctionofX.IfPdenotestheprobabilitymeasureinoursetting,suchfunctioninthepoint(x1,...,xn)isgivenbyP(X1≤x1,...,Xn≤xn).However,thisfunctionmixesinformationonthedependencebetweenthedifferentcomponentsofthevectorwithinformationonthedistributionofthesinglecomponentsthemselves.Copulafunctionshavebeenintroducedinordertoallowaseparationbetweenthemarginalcumulativedistributionfunctions(cdfforshort)andthedependencestructure.Theformerconcernssinglecomponents,takenoneatthetime,andisgivenbythecdf’sFi(x):=P(Xi≤x),i=1,...,n,whichweassumetobecontinuous.Thelatterisentirelyrepresentedbythecopulafunctionweintroducenow.ItiswellknownthatU1=F1(X1),...,Un=Fn(Xn)areuniformlydistributedrandomvariableson[0,1].Thejointcumulativedistributionfunctionof(U1,...,Un),thatwedenoteby

C(u1,...,un)=P(U1≤u1,...,Un≤un),

iscalledthecopulafunctionof(X1,...,Xn)andhasthefollowinglinkwiththemul-tivariatecdf:

P(X1≤x1,...,Xn≤xn)=C(P(X1≤x1),...,P(Xn≤xn)).

Onecaneasilycheckthatacopulahasthefollowingproperties:1.C(u1,..,ui−1,0,ui+1,..,un)=02.C(1,..,1,uk,1,..,1)=uk

3.∂u1...unCisapositivemeasureinthesenseofSchwartzdistributions.ThismeansconcretelythatforanyhypercubeH=[a1,b1]×...×[an,bn]⊂[0,1]n,

P[(U1,..,Un)∈H]≥0.

Whenn=2,thiscanbewrittenas

C(b1,b2)−C(a1,b2)−C(b1,a2)+C(a1,a2)≥0.

(1)

NewfamiliesofCopulasbasedonperiodicfunctions

3

Conversely,onecanshowthatanyfunctionthatsatisfiesthesethreeconditionscanbeviewedasthejointcdfofavectorofuniformvariableson[0,1]andisthusacopula.ThisisknownasSklar’stheorem,seeforexampleJoe(1997)orNelsen(1999).Inthefollowing,theexpression”simulatingacopulaC”willdenotethesimulationofarandomvectorofuniformvariables(U1,..,Un)on[0,1]whosejointcdfisC.Amongthedifferentwaystodefinespecificcopulafunctions,therearefollowingtwo.ThefirstoneconsistsinseekingfunctionsCsatisfyingthethreeaboveprop-erties.Archimedeancopulasareanexampleofthisapproach.Indeed,Archimedeancopulascomefromtheremarkthatifϕisaconvexdecreasingfunctionsuchthatϕ(1)=0,then

C(u1,..,un)=1{ϕ(u1)+..+ϕ(un)≤ϕ(0)}ϕ−1(ϕ(u1)+..+ϕ(un))

hastheabovethreepropertiesandisthusacopula.Therefore,byspecifyingfamiliesofdecreasingconvexfunctionsthatvanishin1wespecifyfamiliesofcopulas(e.g.Gumbel,Joe,Frank...),seeBouy´eetal.(2000),Nelsen(1999)andJoe(1997).Thesecondmethodconsistsinworkingdirectlywithjointcdf’sF(x1,...,xn)and

−1−1

(un)).therelatedmarginalcdf’sFi.TheassociatedcopulaisthendefinedasF(F1(u1),...,Fn

Evenifthismethoddoesnotalwaysleadtoanalyticallytractablecopulas,itcanprovideuscopulasthatareeasytosimulate.Indeed,themainexampleofthiskindofconstructionisthewellknownfundamentalfamilyofGaussiancopulas.AGaussiancopulaisdefinedasthecopulaofajointGaussianrandomvectorXwithstandardGaussianmarginalsandcorrelationmatrixρ,andisthusgivenbyNρ(N−1(u1),...,N−1(un))whereNisthecdfofastandardnormalvariableandNρisthejointcdfofX.Thiscopulacannotbecomputedexplicitly.Thesimula-tionishoweverstraightforward:itissufficienttoconsider(N(X1),...,N(Xn))whereX=(X1,...,Xn)isaGaussianvectorwithcorrelationρthatcanbeeasilysimulatedbyresortingtoastandardGaussiansimulatorandtoaCholeskydecompositionofρ.AsimilarapproachleadstoStudent’scopula(seeBouy´eetal.(2000).andGenzandBretz(2002)

ApossiblemajordrawbackofArchimedeanandGaussiancopulasistheirsym-metricproperties.Letusprecisethisbythefollowingdefinition.

Definition1.1.(k-exchangeability).LetusconsideracopulaCthatisthecdfoftherandomvector(U1,..,Un).WewillsaythatthecopulaCisk-exchangeable

NewfamiliesofCopulasbasedonperiodicfunctions

4

(2≤k≤n)if,forany1≤i1Itisclear,withthisdefinition,thatak󰀆-exchangeablecopulaisalsoak-exchangeablecopulawheneverk󰀆>k.Inthetwo-dimensionalcaseweresortdirectlytotheterm“exchangeable”ratherthan“2-exchangeable”.WhendealingwithdefaultablebondsasinJouaninandal.(2001),n-exchangeablecopulas(astheArchimedeancopu-las)cannotmodelsituationswherethedependenceisasymmetricandbasedontheassetsthemselves.With2-echangeablecopulas(suchasforexampleGaussianorArchimedeancopulas),wecannotmodelasymmetricrelationsfeaturingafirstentitythatinfluencesasecondonemorethanthelatterinfluencestheformer.

Inrecentyears,copulafunctionshavereceivedagreatdealofattention,seeforexamplethepapersofGenzandBretz(2002),H¨urlimann(2002,2003),JuriandW¨uthrich(2002),Nelsenetal.(2001),WeiandHu(2002),andthebooksofJoe(1997)andNelsen(1999).Forfinancialandinsuranceapplications,recentappli-cationsoncopulasincludeforexampleBouy´eetal.(2000),Cherubinietal.(2002),Embrechtsetal.(2001),Jouaninetal.(2001),KlugmanandParsa(1999),Pram-polini(2003),andSch¨onbucherandSchubert(2001).

Inthispaper,wewillbuildnewfamiliesofcopulasbasedonthefirstapproach,usingperiodicfunctionsfollowingAlfonsi(2002).Wefirstbegintoworkinthetwo-dimensionalcase,obtainingaone-parametercopula,andthengiveawaytoextendtheresulttothen-dimensionalcasewithn>2,gettingafamilywithn−1parameters,2-exchangeableornot.Finally,weexplainhowsuchcopulascanbesimulated.

2Constructionofcopulasbasedonperiodicfunc-tions

2.1Theconstructionoffamiliesintwodimensions

Webeginbydefiningournewcopulafunctionsforbivariatedependence,i.e.forpossibledependencestructuresbetweentworandomvariables.Itishelpfultofirstrecallthreeparticular“limit”copulas.The“middle”one,whichistypicallydenotedbyC⊥,isthecopulaobtainedwhenU1andU2areindependentuniformvariableson

NewfamiliesofCopulasbasedonperiodicfunctions

5

[0,1],thatis:

C⊥(u1,u2):=u1u2.

−+

Thetwoother“limit”copulas,denotedbyCFandCFrespectively,arethetwo

Frechetboundsoftheconvexsubsetofcopulas:

−+

(u1,u2)=(u1+u2−1)+,(u1,u2)=min(u1,u2),CFCF

wherex+=max(x,0)denotesthepositivepartoperator.NamingUauniform

+

canbeobtainedasthecopulaof(U,U)andcorrespondsrandomvariableon[0,1],CF

obviouslytoperfectpositivedependence,whereasCFisobtainedasthecopulaof

(U,1−U)anddescribestotalnegativedependence.Moreover,foranycopulaC,wehave

−+

CF(u1,u2)≤C(u1,u2)≤CF(u1,u2),∀(u1,u2)∈[0,1]2.

Recalltheabovecharacterizationofacopulafunctionforthebivariatecase:thefunctionCdefinedon[0,1]2isacopulaifandonlyifi)C(u1,0)=0andC(0,u2)=u2,ii)C(u1,1)=u1andC(1,u2)=u2,andiii)ofSchwartzdistributions.

Wewillsayinthefollowingthatacopulaadmitsadensitywhenthatcanbewrittenintheform

c(u1,u2)=c˜(u1+u2)(resp.c(u1,u2)=c˜(u1−u2))

forafunctionc˜:R→R.Tosatisfypropertiesi),ii)andiii),c˜mustbenonnegativeandverify:

󰀆

u1

∂2C

∂u1∂u2

∂2C∂u1∂u2

isapositivemeasureinthesense

=c(u1,u2)

existsintheordinarysense.Inthispaperweproposecopulasthathaveadensity

󰀆

1

c˜(x1±x2)dx1dx2=u1,∀u1∈[0,1],c˜(x1±x2)dx1dx2=u2,∀u2∈[0,1].

󰀆01󰀆0u2

0

0

Differentiatingwithrespecttou1andu2respectively,weobtain󰀆1

c˜(u1±x2)dx2=1,∀u1∈[0,1],󰀆01

c˜(x1±u2)dx1=1,∀u2∈[0,1].

󰀅1󰀅u+1

Differentiatingfurtherthefirstrelation,since0c˜(u1+x2)dx2=u11c˜(x2)dx2(resp.󰀅1󰀅u1

c˜(u1−x2)dx2=u1−1c˜(x2)dx2),weobtain:0

c˜(u1+1)=c˜(u1)∀u1∈[0,1],(resp.c˜(u1−1)=c˜(u1)∀u1∈[0,1]).

0

NewfamiliesofCopulasbasedonperiodicfunctions

6

Thus,aconsequenceofrequiringc(u1,u2):=c˜(u1±u2)tobethedensityofacopulaisthatc˜hastobe1-periodic(atleaston[−1,2],butitsvalueoutsidethisinterval

󰀅1

isirrelevant)andthat0c˜(u)du=1.Conversely,itiseasytoseethatifc˜isa

󰀅1

nonnegative1-periodicfunctionsuchthat0c˜(u)du=1,then

󰀆u1󰀆u2󰀆u1󰀆u2

󰀈−(u1,u2):=󰀈+(u1,u2):=Cc˜(x1+x2)dx1dx2(resp.Cc˜(x1−x2)dx1dx2)

0

0

0

0

satisfiesconditionsi),ii)andiii),andsoisacopulafunctionthatwecall,withaslightabuseoflanguage,periodiccopula.Wenoteherethatcopulasobtainedwiththesedensitiesformaconvexsetsinceaconvexcombinationof1-periodicnonnegative

󰀅1

functionssatisfying0c˜(u)du=1isalsoa1-periodicnonnegativefunctionwithintegral1onaperiod.Noticefurtherthattheuseofthe“-”and“+”signsappearstobecounterintuitive(onewouldexchangetheabovesigns),butthereisareasonforthisthatwillbeclarifiedlateron.

Attimes,ratherthancharacterizingcopulasthroughtheirdensities,itisprefer-abletohaveadirectcharacterizationofthecopulaitself.Tocharacterizeperiodiccopulaswithoutexplicitlyreferringtotheirdensities,denotebyϕtheprimitiveofc˜

󰀅x

thatvanishesat0,andsetΦ(x):=0ϕ(u)du,sothatΦisadoubleprimitiveofc˜.Wecanthenrewritetheaboveperiodiccopulaasfollows:

󰀆u1󰀆u2

󰀈−(u1,u2)=Cc˜(x1+x2)dx1dx2=Φ(u1+u2)−Φ(u1)−Φ(u2),(2)

󰀆0u1󰀆0u2

󰀈+(u1,u2)=Cc˜(x1−x2)dx1dx2=Φ(u1)+Φ(−u2)−Φ(u1−u2)

0

0

󰀈−(u1,u2)=andweseethatthefirstcopulaisalwaysexchangeable(symmetric),inthatC

󰀈−(u2,u1),whereasthesecondonecanbenonsymmetricifΦisnotpar,i.e.ifC

Φ(−x)=Φ(x)forsomex.WehavethuscharacterizedourperiodiccopulasintermsofdoubleprimitivesΦofperiodicfunctionsc˜.

Afirstexampleofsuchafunctionwhicharisesnaturallyisc˜(x)=1+sin(2πx+ϕ)whereϕisaparameterthatwecantakein[0,2π).Itgivesrespectivelythefollowingfamiliesofcopulas:

󰀈−(u1,u2)=u1u2+(sin(2πu1+ϕ)−sin(ϕ)−sin(2π(u1+u2)+ϕ)+sin(2πu2+•Cϕ))/(2π)2

󰀈+(u1,u2)=u1u2+(sin(ϕ)−sin(2πu1+ϕ)+sin(2π(u1−u2)+ϕ)−sin(−2πu2+•Cϕ))/(2π)2.

NewfamiliesofCopulasbasedonperiodicfunctions

7

Thesecopulas,however,cannotmodelstrongpositiveornegativedependence,since

thesecopulascannotapproachneitherC−+

FnorCF.Onthecontrary,itmightbeinterestingtohaveafamilyofcopulaswhichattainsthecopulasC+F

,C⊥andC−

Faslimitcasesinordertobeabletodescribealargerangeofdependencestructures.Byexpressingcopulasbymeansof∂2C

attainingC+∂u1∂u,F

,C−

2

FandC⊥amountstoattaining

µ+=δx1(dx2)⊗dx1,µ−=δ1−x1(dx2)⊗dx1,c⊥=1.

withthecopuladensity.Since

∂2C⊥

∂u1∂u2

existsintheordinarysenseofdifferentiation,

ithasadensityc⊥=1thatcorrespondstotheLebesguemeasureonthesquare[0,1]2,µ⊥=dx1⊗dx2.Instead,µ+andµ−aretobeinterpretedinthegeneralizedsense.Moreover,µ+andµ−chargeonlythediagonalsofthesquare[0,1]2,i.e.∆+={(x,x),x∈[0,1]}and∆−={(x,1−x),x∈[0,1]}respectively.Theideaisthentofindafamilyofperiodicfunctionsc˜γindexedbyaparameterγandsuchthatthedensityc˜γ(x1−x2)(resp.c˜γ(x1+x2))concentrateson∆+(resp.∆−)forsomevaluesofγ.Thus,ifwedefinethepiecewise1-periodicfunctionc˜γfor0<γ≤

12byc˜γ(x):=

1󰀉

1[0,γ](x)+1(1−γ,1)(x)󰀁forx∈[0,1),(3)

weseethatthefamilyofdensitiesdefinedasc+γ(x1,x2):=˜c

γ(x1−x2)verifies:c+⊥+

D

1/2=c,cγ(x1,x2)dx1dx2−

γ→→0

µ+→D

denotingconvergenceindistribution.Thecorrespondingconvergenceinlawfor

randomvariablesisdenotedbyL.TocalculatetheassociatedcopulaCγ

+:=C

󰀈+,itisbesttotryadrawingandseethatitsvaluein(u1,u2)istheareaintheintersectionoftherectangledelimitedby(0,0)and(u1,u2)with{(x1,x2)∈[0,1]2,−γ≤x1−x2≤γorx1−x2≤γ−1orx1−x2≥1−γ}.Weobtain,foru1≤u2whichisnotrestrictive

sinceCγ+(u1,u2)=Cγ+

(u2,u1),Cγ+(u1,u2)=

1

[u12γ1u2

+[−((u2−u1−γ)++(u2−γ)+)(min(u1,u2−γ))+−((u1−γ)+)2

2+((u2−1+γ)++(u2−1+γ−u1)+)·(min(u1,u2−1+γ))++((u1−1+γ)+)2]]

InordertoobtainafamilythatreachesC−

Finstead,weusetheotherfamily,precisely

c−γ(x1,x2)=˜c

γ(x1+x2).Weobtainc−⊥−

1/2=c,cγ(x1,x2)dx1dxD

2−

γ→→0µ−.(4)

NewfamiliesofCopulasbasedonperiodicfunctions

8

+−

toCγ,thusFortunately,asimplegeometricremarklinkstherelatedcopulaCγ

avoidinganewcalculation:

−+

(1−u1,u2)(u1,u2)=u2−CγCγ

(5)

Thus,withthismethod,wehaveobtainedafamilyofcopulaquite”exhaustive”going

+−

andtakingthein-betweenvalueC⊥.Incidentally,weseenowwhytoCFfromCF

󰀈+thecopulacomingfromc󰀈−thecopulacomingwechosetonameC˜(x1−x2)andC+

andthelatterfromc˜(x1+x2):thisisdonebecauseinourcasetheformerattainsCF−

CF.

Attimesitcanbehandytohaveasinglenumbermeasuringsomestylizedaspectsofagivencopula.TheSpearman’srhoissuchanumberandisawellknownmeasureofconcordance,seeforexampleEmbrechtsetal.(2001).Whendefinedintermsofcopulafunctions,itisgivenbythefollowingintegralinthecopuladensityc:ρ:=󰀅1󰀅1

−+

copulasrespectively,andCγ1200u1u2c(u1,u2)du1du2−3.WeobtainfortheCγ

ρ+γ=(2γ−1)(γ−1),ργ=(1−2γ)(γ−1).

Aninterestingremarkconcernstheconstructionofnon-exchangeable(non-symmetric)copulas(C(u1,u2)=C(u2,u1))throughthismethod.Thiscanberelevantforex-ampleincreditriskwhenmodellingthedefaultdependencebetweentwofirmswithasymmetricrelations.Onemayhaveafirstfirmdependingmoreonasecondonethanthelatterdependsontheformer.Thiscouldbethecaseofalittlefirmthatprovidesgoodstoalargeone.Adefaultofthelargecompanycouldinduceadra-maticeffectonthesmallerone,whereasadefaultofthesmallfirmcouldhavelittlerelevancetothelargeone.Noticethat,inthisrespect,ArchimedeanandGaussiancopulasonlyprovidesymmetricrelationsbetweenthetwofirmsdefaults.

Inordertoprovideanexampleofnon-exchangeablecopulaobtainedfromourfamily,weseefrom(2)thatouronlychanceistoselectaperiodicfunctionc˜whose

󰀈+.ThesimplestsuchdoubleprimitiveΦisnotparandthentaketherelatedCfunctionisc˜:=c¯γdefined,forγ∈[0,1],as

c¯γ(x):=(1/γ)1[0,γ](x),forx∈[0,1).

(6)

γ¯+:=C󰀈+Wehavethenc¯γ(x)=c˜γ(x−).Thus,weobtainthefollowingcopulaCγ22NewfamiliesofCopulasbasedonperiodicfunctions

9

associatedwiththedensityc˜(x1−x2):=c¯γ(x1−x2):

󰀆u1󰀆u2󰀆u1󰀆u2

¯+(u1,u2)=c¯γ(x1−x2)dx1dx2=c˜γ/2(x1−x2−γ/2)dx1dx2Cγ

0000󰀆u1󰀆u2+γ/2=c˜γ/2(x1−x2)dx1dx2

=

γ

02+

Cγ/2(u1,min(u2

+++

+γ/2,1))−Cγ/2(u1,γ/2)+Cγ/2(u1,(u2+γ/2−1))

Withthisasymmetricperiodiccopulawestillhavegoodasymptoticproperties,in

+¯1¯+→C+whenγ→0.CalculatingtheSpearman’srho,wethatC=C⊥andCγF

¯+)=(2γ−1)(γ−1)forγ∈[0,1].Somehowsurprisingly,ρ(C¯+)findagainρ(C

γ

γ

takesnegativevaluebetweenγ=1/2andγ=1,andvanishesat1/2foracopula

differentfromC⊥.Toobtaina(symmetric)familythatreachesCFweneedconsider

󰀅u1󰀅u2

−¯C(u1,u2):=c¯γ(x1+x2)dx1dx2.Wegetγ

0

0

¯−(u1,u2)=C−(u1,(u2−γ/2)+)+C−(u1,1−(γ/2−u2)+)−C−(u1,1−γ/2)Cγγ/2γ/2γ/2¯−)=−ρ(C¯+)=−(2γ−andcanshow,withatrivialchangeofvariable,thatρ(Cγγ1)(γ−1).Thus,ifwewishtodescribeanegativeasymmetricdependence,itisbest

+touseCγwith1/2<γ<1.However,wepointoutthatwecannotdescribenegative−dependencewithanasymmetriccopulaattainingCF.

Anotherinterestingsyntheticquantityconcerningcopulasistheupper-tailde-pendence.Thisindicatorisdefinedas

󰀆󰀆111

c(x1,x2)dx1dx2λ:=lim

u→0u1−u1−u

whenthecopulahasadensityc.Letusconsiderthegeneralperiodiccase,where

󰀅1

asbeforec˜isanonnegative1-periodicfunctionsuchthat0c˜(u)du=1,andϕis

󰀅󰀅111

itsprimitivethatvanishesat0.Usingtheperiodicity,wehaveu1−u1−uc(x1±

󰀅󰀅0󰀅1010

x2)dx1dx2=uc(x±x)dxdx=±(ϕ(x1)−ϕ(x1∓u))dx1→0since1212u−u−u−uu→0󰀅󰀅101u

limu−uϕ(x1)dx1=limu0ϕ(x1)dx1=ϕ(0)=0.Thus,periodiccopulashaveno

u→0

u→0

upper-taildependence.However,ifonewishestoobtainacopulawithanupper-taildependenceequaltoλ>0,itisstillpossibletoconsidertheconvexcombination

+

(1−λ)C+λCFwhereCisapreferredperiodiccopula.Thisconvexcombination

canbesimulatedeasilywhenoneknowshowtosimulatethebasicC,aswedofortheperiodiccopulas(withinvertibleϕ,i.e.withastrictlypositiveperiodicfunctionc˜)weintroducedhere.

NewfamiliesofCopulasbasedonperiodicfunctions

10

2.2

−+

AsmoothfamilythatreachesCF,C⊥andCF

+−

AdrawbackofthefamiliesCγandCγisthatthesecopulasareconstantonsome

intervalsandcomesfromthe0-1natureofthedensity,andmorepreciselyfromtheexistenceofadomain(withpositivemeasure)wherethedensityvanishes.Thiscausesproblems,especiallywheninneedofsimulatingthecopula.Inordertoavoidthisdrawback,theideaisthentoreplaceγwitharandomvariableΓandthentaketheexpectationofc˜Γ,usingtheconvexityofthesubsetoftheperiodiccopulas.Indeed,ifΓ∼pwherepisthedensityofaprobabilitymeasureon[0,1/2]suchthatp(γ)>0∀γ,

󰀅1then󰀇cp(x):=E[˜cΓ(x)]=02c˜γ(x)p(γ)dγisapositive1-periodicfunction.Thus,ifwehaveafamilyofrandomvariables(Γα)α≥0concentratedon[0,1/2]withdensities{pα,α∈]0,+∞[}on[0,1/2]andsuchthatΓα−→1/2andΓα−→0,wecandefine

α→0

α→∞

L

L

󰀇+:=E[C+]=CαΓα

󰀆

0

12+󰀇−:=E[C−]=Cγpα(γ)dγ,CαΓα

󰀆

0

12−Cγpα(γ)dγ

(7)

(thatcorrespondrespectivelytotheperiodicdensitiesc˜(x1−x2)=󰀇cpα(x1−x2)andc˜(x1+x2)=󰀇cpα(x1+x2)).Wehaveobtainedafamilyofcopulaswithgoodasymptoticproperties,inthat

󰀇+→C⊥,C󰀇+Cαα

α→0

α→+∞

+󰀇−→C⊥,andC󰀇−→CF,Cαα

α→0

α→+∞−

→CF.

1

Wecanbuildeasilyarandomvariablewithsuitabledensityon[0,2]bytransforming

auniformvariableUon[0,1]accordingtoahomeomorphism.Indeed,considerΓα:=

1αU,2

1

α∈]0,+∞[,sothatwegetafamilyofdensitiespαon[0,2]thatfeaturethe

desiredasymptoticpropertiesin0and+∞andareimmediatelycomputed:

pα(u)=(2α/α)u

1

1−α

α.

+

ThecalculationofCαdoesnotpresentdifficultieseither.Wefirstcalculatethe

periodicfunction󰀇cα:=󰀇cpα,obtaining

󰀇cα(x)=

1−α1

[1−(2x)α],α=11−α

󰀇c1(x)=−ln(2x)

for0≤x≤1/2,and󰀇cα(x)=󰀇cα(1−x)for1/2≤x≤1,sincethesamepropertyholdsforthebasicc˜γ’s.Letuscomputetheprimitiveψαof󰀇cαthatvanishesatx=0.Weobtain,for0≤x≤1/2:

ψα(x)=

11

[2x−α(2x)α],α=1,

2(1−α)

ψ1(x)=x−xln(2x).

NewfamiliesofCopulasbasedonperiodicfunctions

11

Usingthesymmetryproperty󰀇cα(x)=󰀇cα(1−x)weobtain,for1/2≤x≤1,ψα(x)=ψα(1/2)+(ψα(1/2)−ψα(1−x))=1−ψα(1−x),sinceψα(1/2)=1/2.Instead,forx∈[−1,0]weusetheperiodicityof󰀇ctogetψα(x)=−ψα(−x).Toproceedfurther,weneedtoknowalsotheprimitiveΨαofψα,i.e.thedoubleprimitiveof󰀇cα.Wefind,

1forx∈[0,2]:

1α211+α

2

Ψα(x)=[x−2αxα],α=1,

2(1−α)α+1and,forx∈[1,1]:2Ψα(x)=x−

32x2

Ψ1(x)=x−ln(2x),

42

1

+Ψα(1−x),2

andfinallyΨα(x)=Ψα(−x)forx∈[−1,0],sinceψαisanoddfunction.Weare

󰀅u󰀅u󰀅u

+󰀇αnowabletocalculateC(u1,u2)=0201󰀇cα(x1−x2)dx1dx2=02(ψα(u1−x2)−

󰀅u2

ψα(−x2))dx2=0(ψα(u1−x2)+ψα(x2))dx2andsoweget,inagreementwithourearliergeneralresult(2):

󰀇+(u1,u2)=Ψα(u1)+Ψα(u2)−Ψα(u1−u2).Cα

(8)

󰀇−canthenbecalculatedeasily,sinceC−(u1,u2)=u2−C+(1−u1,u2)ThecopulaCαγγ

1󰀅

󰀇+(1−u1,u2).We󰀇−(u1,u2)=2(u2−C−(1−u1,u2))pα(γ)dγ=u2−CandthereforeCγαα0

󰀅1/2

++󰀇󰀇canalsoeasilycalculatetheSpearman’srhoofCα,sinceρ(Cα)=0(2γ−1)(γ−1)21/αγ(1−α)/α/αdγsothat

+󰀇αρ(C)=1−

13

+

2(1+α)2(1+2α)

−+󰀇α󰀇αandwehaveρ(C)=−ρ(C)(thisisageneralrelationbetweentherhoofthe

periodiccopulaswithdensityc˜(x1+x2)andc˜(x1−x2)).WecansumupinTable1thevaluesforwhichalimitcopulaisreached.Thefamiliesbuiltpreviouslyare

α

+

Cα−Cα󰀇+Cα

CF

C⊥

1212+CF

/0/+∞

0/+∞/

00

󰀇−Cα

󰀇αTable1:LimitcopulasfortheparameterizationCαandC

NewfamiliesofCopulasbasedonperiodicfunctions

12

exchangeable,sincetherelatedc˜areexpectationsoffunctionsleadingtopardoubleprimitivesandthereforeleadthemselvestopardoubleprimitives,sothat(2)yieldssymmetry.

However,wecanalsoconstructasmoothfamilyofnonsymmetriccopulasbydefiningc˜astheexpectationofthepreviousnonsymmetricfunction(6)witharandomγ.

Indeed,ifZ∼qwhereqisapositivedensityofaprobabilitymeasureon[0,1],

󰀅1

thenc¯q:=E[¯cZ]=0c¯γ(x)q(γ)dγisapositive1-periodicfunction.Thus,asbefore,ifwehaveafamilyofrandomvariables(Zα)α≥0concentratedon[0,1]withdensities{qα,α∈]0,+∞[}on[0,1]andsuchthatZα−→1andZα−→0,wecandefine

α→0

α→∞

L

L

󰀇¯:=Cα

+

¯+]E[CZα

=

󰀆

0

1

¯+qα(γ)dγ,Cγ

󰀇¯:=Cα

¯−]E[CZα

=

󰀆

0

1

¯−qα(γ)dγCγ

(9)

(thatcorrespondrespectivelytotheperiodicdensitiesc˜(x1−x2)=c¯qα(x1−x2)andc˜(x1+x2)=c¯qα(x1+x2)=E[¯cZα(x1+x2)]).

WetakeZα:=Uα,whereUisauniformrandomvariableon[0,1].Itsdensityis

qα(u)=

11−α

uα,α

sothattheassociatedperiodicfunctionc˜=c¯αisgivenin[0,1]by

󰀇c¯α(x):=c¯qα=

1−α1

[1−xα],α=1,1−α

󰀇c¯1(x):=c¯q1=−ln(x).

Inordertofindanexpressionforthecopula,wecomputetheprimitivegαof󰀇c¯αthatvanishesatx=0.Wehave,forx∈[0,1]:

gα(x)=

11

[x−αxα],α=1,1−α

g1(x)=x−xln(x),

andforx∈[−1,0]wehavegα(x)=gα(1+x)−1.DenotebyGαtheprimitiveofgαvanishingat0.Forx∈[0,1]Gαisgivenby

󰀂󰀃12α21+α1

x−xα,α=1,Gα(x)=

1−α21+αwhereasforx∈[−1,0]wehave

Gα(x)=Gα(1+x)−x−Gα(1).

ByFubini’stheorem,thecopulasdefinedby(9)arethesameasthecopulasassociatedwiththeperiodicfunctionsc˜=󰀇c¯αanddefinedby(2).Wethushave,by(2)andusing

13

G1(x)=x2−x2ln(x),

42

NewfamiliesofCopulasbasedonperiodicfunctions

13

periodicityof󰀇c¯(thusreplacing󰀇c¯(·)by󰀇c¯(·−1),whichishelpfulinsomecomputationalrespects):

+

󰀇¯Cα(u1,u2)=Gα(u1)+Gα(−u2)−Gα(u1−u2)

−󰀇¯Cα(u1,u2)=Gα(u1+u2−1)−Gα(u2−1)−Gα(u1−1)+Gα(−1).

CalculatingtherelatedSpearmanrhowefind:

+

󰀇¯ρ(Cα)=1−

23

+

1+α1+2α

−+−+󰀇󰀇󰀇󰀇¯¯¯¯andρ(Cα)=−ρ(Cα).Asweknowfrom(2),Cα,contrarytoCα,isafamily

ofsymmetriccopulas,butthisfamilyishoweverinterestingbecauseitcompletes

+󰀇¯“naturally”thefamilyCα.InTable2wesumupthevaluesoftheparameterαfor

󰀇¯copulasreachthelimitcopulas.whichtheC

CF

C⊥1100

+CF

¯+Cα¯−C

/0/+∞

0/+∞/

󰀇¯Cα−󰀇¯C

α

α+

󰀇¯αandC¯αTable2:LimitcopulasfortheparameterizationC

2.3Beyondthebivariatecase

Thereareseveralwaystoextendthepreviousconstructiontobuildacopulaindimensionn>2.Indimensionn>2,weseethatifc˜isa1-periodicfunctionsuch

󰀅1󰀄that0c˜(x)dx=1,thenc˜(ni=1εixi)aredensitiesofcopulaswhenεi∈{−1,1}.However,thesecopulascannotbeobtaineddirectlyintermsofbivariatecopulasandthereforerequirecumbersomecalculations.Inordertokeeptheanalysissimple,weworkinsteadwiththedensitiesalreadydefinedforthebivariatecase.Considerthefollowingproposition.

Proposition2.1.Assumethatc1,...,cn−1aredensitiesoftwodimensionalcopulas˜n−1,i.e.cj(x,y)=c˜j(x+εjy)withεj∈builtthroughperiodicdensitiesc˜1,...,c

NewfamiliesofCopulasbasedonperiodicfunctions

14

{−1,1}andc˜janonnegative1-periodicfunctionwithunitintegralonaperiod.Setcˇ:=(c1,...,cn−1).Then

ˇ1(u1,..,un):=C

󰀆

u1

..

󰀆

un

c1(x1,x2)c2(x2,x3)..cn−1(xn−1,xn)dx1...dxn

󰀆0u1󰀆0un

ˇ2(u1,..,un):=C..c1(x1,x2)c2(x1,x3)..cn−1(x1,xn)dx1...dxn

0

0

arecopulas.

Theproofisquiteimmediate.Properties1and3inSection1aresatisfiedby

󰀅uk

ˇconstruction.ItremainstoobservethatC(1,..,1,uk,1,..,1)=0dxk=uk,byusingFubini’stheorem,integratingfirstwithrespecttothexi’swithi=k,and

󰀅1+x

usingthenthepropertyxc˜(u)du=1.

ˇ1isconvenientifwewishtoexpressthen-dependenceintermsThefirstcopulaC

ˇ2allowsustoofdependencesoftwoconsecutivevariables,whereasthesecondoneC

expressthen-dependenceintermsofthedependenceofapreferredvariable(thefirstinourformulation)withallothervariables.Thesecondmethodcouldbereferredtoasa“preferred-”or“main-factor”approach.

3Thesimulationofperiodiccopulas

Letusbeginbyrecallinghowtosimulateacopulathatadmitsadensityp(x1,...,xn).Weneedsimulateavectorofuniformvariables(U1,...,Un)thathasthefollowingjointcdf:

C(u1,...,un)=

󰀆

0u1

..

󰀆

0

un

p(x1,...,xn)dx1...dxn.

Thiscanbedoneaccordingtothefollowingsteps.

•TosimulatethefirstvariableU1,itsufficestosamplefromauniformrandom

˜1in[0,1].ThiscanbeeasilydoneonaPC.Letuscallu1thevariableUsimulatedsample.

•Toobtainasampleu2fromU2consistentlywiththeearliersampledu1,weneedtoknowthelawofU2conditionalonU1=u1.LetusnameF2(.|u1)thecdfofthislaw,

F2(u2|u1)=P(U2≤u2|U1=u1)=∂u1C(u1,u2,1,..,1)/∂u1C(u1,1,1,..,1)

󰀆1󰀆u2󰀆1

...p(u1,x2,..xm)dx2..dxm.=∂u1C(u1,u2,1,..,1)=

0

0

0

NewfamiliesofCopulasbasedonperiodicfunctions

15

−1˜˜2isanewuniform-[0,1]sampleindependentWetakeu2=F2(U2|u1)whereU

˜1.ofU

•tosimulateUkconsistentlywiththeearliersampledu1,...,uk−1,weneedthelawofUkconditionalonUi=uiforiFk(uk|u1,...,uk−1)=P(Uk≤uk|U1=u1,..,Uk−1=uk−1)

∂u1,..,uk−1C(u1,..,uk,1,..,1)=

∂u1,..,uk−1C(u1,..,uk−1,1,..,1)󰀅uk󰀅1󰀅1

..0p(u1,..,uk−1,xk,..,xn)dxkdxk+1..dxn

00

=󰀅1󰀅1󰀅1..0p(u1,..,uk−1,xk,..,xn)dxkdxk+1..dxn00

−1˜˜kisauniform-[0,1]variablewecantakeUk=Fk(Uk|u1,..,uk−1)whereU˜1,...,U˜k−1).independentof(U

ˇ1,2,maintainingthenotationofProposition2.1,InthecaseoftheperiodiccopulasC

󰀅uk

12

wehaverespectivelyFk(uk|u1,..,uk−1)=0ck−1(uk−1,xk)dxkandFk(uk|u1,..,uk−1)=󰀅uk

ck−1(u1,xk)dxk,wheretheupperindexreferstothecopulaweareconsidering.0

Takingthesmoothfamiliesoftheprevioussection,theseFfunctionscanbeexpressed

󰀅u

intermsofψαandgα(forexample0k󰀇cα(u±x)dx=±(ψα(u±uk)−ψα(u)).More-overtheyarestrictlyincreasing,andcanthereforebeinvertedeasilynumerically.Wenoteherethatifwechoosethe“nonsmooth”copulasC±andC,thisinversionisnotfeasiblesincethedensitiesvanishonsomeintervals.Thuswehaveobtainedfamiliesofn-dimensionalcopulasessentiallycharacterizedbyn−1parametersαiplustheflagssgni,symi,fori=1,...,n−1,wheresymiissetaccordingtowhetherwetakeasymmetricfamilyornot(symbolizedherebythebar),andwheresgniistakenfromtheset{−,+}.

±

4Conclusions

Thenewfamilyof“periodic”copulasintroducedinthispaperisanattemptatob-tainingpracticallymanageableandpossiblyasymmetriccopulas.Wehavestudiedthetwo-dimensionalcase,basedonasingledependenceparameter,andthenpro-videdameanstoconstructann-dimensionalcopulabuildingonthetwo-dimensionalcase.Weobtainedfamiliesofcopulasindimensionnandparameterizedbyn−1

NewfamiliesofCopulasbasedonperiodicfunctions

16

parameters,implyingpossiblyasymmetricrelations.Weexplainhowsuchcopulascanbesimulated.

References

[1]AlfonsiA.(2002).Constructionofcopulaswithperiodicdensities,workingpaper.[2]Bouy´eE.,DurrlemanV.,NikeghbaliA.,RibouletG.,RoncalliT.(2000).Copulas

forFinance,AReadingGuideandSomeApplications.

[3]Cherubini,U.,andLuciano,E.(2002).Bivariateoptionpricingwithcopulas.

AppliedMathematicalFinance.9(2),2002,pp.69-86.

[4]EmbrechtsP.,LindskogF.,McNeilA.(2001).ModellingDependencewithCop-ulasandApplicationstoRiskManagement.

[5]Genz,A.andBretz,F.(2002)Methodsforthecomputationofmultivariate

t-probabilities.JournalofComputationalandGraphicalStatistics,11,950-971.[6]H¨urlimann,W.(2002).Hutchinson-Lai’sconjectureforbivariateextremevalue

copulas.StatisticsandProbabilityLetters61(2),191-198.

[7]H¨urlimann,W.(2003).Fittingbivariatecumulativereturnswithcopulas.Com-putationalStatisticsandDataAnalysis,forthcoming.

[8]Joe,H.(1997).MultivariateModelsandDependenceConcepts.Chapman&

Hall,London.

[9]JouaninJ.-F.,RapuchG.,RibouletG.,RoncalliT.(2001),Modellingdepen-denceforcreditderivativeswithcopulas,GroupedeRechercheOprationnelle,Cr´editLyonnais,France.

[10]Juri,A.,andW¨uthrich,M.V.(2002).Copulaconvergencetheoremsfortail

events.InsuranceMathematicsandEconomics30(3),405-420.

[11]Klugman,S.A.,andParsa,R.(1999).Fittingbivariatelossdistributionswith

copulas.InsuranceMathematicsandEconomics24(1-2),139-148.[12]Nelsen,R.(1999).AnIntroductiontoCopulas.Springer,NewYork.

NewfamiliesofCopulasbasedonperiodicfunctions

17

[13]Nelsen,R.,Quesada-MolinaJ.J.,Rodrguez-LallenaJ.A.,andbeda-FloresM.

(2001).Distributionfunctionsofcopulas:aclassofbivariateprobabilityintegraltransforms.StatisticsandProbabilityLetters54(3),277-282.

[14]Prampolini,A.(2003).Modellingdependentdefaultsforthepricingandrisk

managementofCDO’sandbasketcreditderivatives.ElectronicproceedingsoftheRiskEuropeconference,Paris,April8-9,2003.

[15]Sch¨onbucher,P.,andSchubert,D.(2001).Copula-DependentDefaultRiskin

IntensityModels,workingpaper.

[16]Wei,G.andHu,T.(2002).Supermodulardependenceorderingonaclassof

multivariatecopulas.StatisticsandProbabilityLetters57(4),375-385

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- xiaozhentang.com 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务