Analysisandinterpretationofrefractorymicrostructuresin
studiesofcorrosionmechanismsbyliquidoxides
J.Poiriera,∗,F.Qafssaouib,J.P.Ildefonsec,M.L.Bouchetoua
b
CRMHT,1D,avenuedelaRechercheScientifique45071Orl´eanscedex2,FranceMoulayIsma¨ıUniversity,FacultyofScience,B.P.4010Zitoune,50000Meknes,Morocco
cPolytech’Orl´eans,8rueL´eonarddeVinci,45072Orl´eanscedex2,France
a
Received1August2007;receivedinrevisedform29September2007;accepted7October2007
Availableonline4January2008
Abstract
Therefractoriesmustnotonlyresisthightemperaturesbutalsocorrosionbyliquidoxides.Thiscorrosioninvolvesphenomenaofdissolutionandprecipitationofnewcrystallinephases.Thestudyofthemicrostructuresofcorrodedrefractoriesprovidesessentialinformation.However,theinterpretationofthemicroscopicobservationsisdifficult.Indeed,becauseofthecrystallizationofliquidglassesduringcooling,themineralphasesobservedatroomtemperaturearenotrepresentativeofthoseobservedathightemperature.Theconceptoflocalthermodynamicequilibriumandtheuseofthephaserulemakesitpossibletointerpretthemicrostructuresofcorrodedrefractories,toexplaintheobservedmineralzonationandtoquantifythecompositionoftheliquidphaseathightemperaturefromchemicalprofilesestablishedbySEM.Experimentaldatafromcorrosionofhighaluminarefractorieswillillustrateandvalidatethistheoreticalapproach.©2007ElsevierLtd.Allrightsreserved.
Keywords:Refractories;Corrosion;Microstructure;Thermodynamicequilibrium;Electronmicroscopy
1.Introduction
Therefractoriesareceramicsusedtolinemanyindustrialhightemperaturefurnaces.Thesematerialsaresubjectedtocom-plexdegradationssuchasthermalshock,erosionorchemicalcorrosionwhichcanoccurseparatelyortogether.
Corrosionbyliquidoxidesisoneofthemostseveremodesofdegradationswhichlimitthelifetimeoftherefractorylinings.Theexaminationofthemicrostructures1ofrefractoriesafteruseisextremelyusefultoevaluatethecorrosionresistanceofvariousrefractoriesandtodeterminethemechanismsofchem-icalattackthusmakingitpossibletoproposenewwaysofimprovementsfortheformulationofrefractories.
However,themicrostructuresofcorrodedrefractoriesareverydifficulttointerpret.Thereasonsareasfollows:
•Therefractoriesaremulti-componentandheterogeneousceramics.Consequently,theyhavecomplexmicrostructures.
•Themicroscopicobservationsandtheanalysesarecarriedoutatroomtemperature.Theyarenotrepresentativeofthemineralandvitreousphasesexistingathightemperature.•Duringcooling,newsolidphasesappearbycrystallizationofliquidoxides.Thecompositionofthevitreousphasesalsoevolveswiththetemperature(seeFig.1).Consequently,theinformationobtainedisoftenlimitedandgivesalreadyknownconclusions.
Inthispaper,wewillpresentamethodtoanalyseandinterpretthemicrostructuresofrefractoriesafteruse.Typicalexamplesofcorrosionofhighalumina-basedrefractorieswillbepre-sented.
Theexperimentalresults,whicharenotwellexplained,willbere-analysedandclarified.
Byusingthermodynamicdataandphasediagrams,thestudyofthemicrostructureswillenableustodeduce:
•Theproportionandthecompositionofthehightemperatureintergranularliquidphase.
•Thegradientsofthechemicalpropertiesbetweenthehotfaceandthebackoftherefractorylining:thechemicalprofileof
∗
Correspondingauthor.Tel.:+33238255514;fax:+33238638103.E-mailaddress:Jacques.Poirier@univ-orleans.fr(J.Poirier).
0955-2219/$–seefrontmatter©2007ElsevierLtd.Allrightsreserved.doi:10.1016/j.jeurceramsoc.2007.10.012
1558J.Poirieretal./JournaloftheEuropeanCeramicSociety28(2008)1557–1568
Fig.1.SEMmicrographsofandalusitebasedrefractoryin(a)naturallycooledand(b)quenchedcrucibles(laboratorytest:T=1600◦C,50wt%Al2O3–50wt%CaOslagandcruciblemethod).
compositionofglasses,theevolutionoftheviscosityoftheliquids.
2.Experimentalprocedureandexaminationofmicrostructures
Twohighaluminarefractorymaterialsbasedonandalusiteandbauxitehavebeenselectedforthepurposeofthisresearch.TheirformulationsandprincipalcharacteristicsareindicatedinTables1and2.ThetypicalmicrostructuresoftheoriginalbricksareshowninFigs.2and3.Fortheandalusiterefractory,afinematrixcomposedofmulliteneedlesinasilica-richglassbindsthecoarsegrainsofmullitizedandalusiteconvertedintoamullite/glasscomposite.2Thebindingglasshasacomposi-tionsimilartothatresultingfromthemullitizationofandalusite(≈70%SiO2,≈25%Al2O3,≈2%Fe2O3,≈1%TiO2and≈1%K2O).
Table1
Formulationsofandalusiteandbauxitebricks(manufacturerdata)RawmaterialRandalusiteKerphaliteKAKerphaliteKFKerphaliteKFChinesebauxiteChinesebauxiteChinesebauxiteCalcinedaluminaClayRR40PlastifierTotal
Size(mm)1–40.3–1.60–0.160–0.0551–40–10–0.16
Andalusitebrick(wt%)3035125
323391493100Bauxitebrick(wt%)
144
100
J.Poirieretal./JournaloftheEuropeanCeramicSociety28(2008)1557–1568
Table2
Chemicalcomposition,densityandapparentporosityofandalusiteandbauxitebricksRefractories
Composition(wt%)Al2O3
AndalusitebrickBauxitebrick
.178.6
SiO233.411.2
CaO0.10.4
MgO0.10.4
Fe2O30.71.7
TiO20.23.3
Na2O0.10.2
K2O0.20.3
M***,A*
A***,M**,TiO2*,(Al,Fe)2TiO5*
2.653.24
11.0916.17
Mineralphases
Density(g/cm3)
1559
Apparentporosity(%)
Mineralphases:A→corundum,M→mullite(***:major;**:mean;*:minor).
Fig.2.Backscatteredelectronimagesofthetypicalmicrostructureofandalusitebrickshowingthemullite–glasscompositeandthebondingmatrixmadefromsilica-richglass:(a)lowmagnification(50×)and(b)highmagnification(1000×).M:mullite,G:glassandP:pore.
Forthebauxiterefractory,coarsegrainsarecomposedofcorundumwithsometialite(titaniumaluminatecontainingsomeiron).Thefinematrixcontainscorundum,mulliteandaglassyphase.Theintergranularglassisveryfineandhasacomplexchemicalcomposition(≈45%SiO2,≈20%Al2O3,≈8%Fe2O3,≈8%P2O5,≈8%TiO2,≈5%CaO,≈2%MgO,≈2%K2O,≈1%Na2O).
Corrosiontests,usingthestaticcruciblemethod,havebeencarriedoutat1600◦C,inanelectricfurnace,incorporatinganelevatinghearth,allowingfortheloadingandunloadingofthecrucible.Cruciblesof100mm×100mm×60mminsizewerecut-outfromthebricks,previouslyfiredat1550◦Cfor12h.After6hofcorrosiontests,thecrucibleswererapidlyquenchedinwaterinordertoavoidpartialcrystallizationoftheliquidphaseduringcooling.
TheselaboratorytestswereperformedwithanAl2O3(50wt%)–CaO(50wt%)slag(labelledAC)whichisclosetothatofaladleslagallowingproductionofAlkilledcarbonsteels.Thissyntheticslagwaspreparedbymixing,inappropriatepropor-tions,powderscomprisingcalciumcarbonate(CaCO3>98%,AlfaAesar)andreactivealumina(CT300SG,Al2O3>99.8%).
Thepost-mortemanalysisofthecruciblesaftertesting(Figs.4and5)permittedtheidentificationoffourzones3:•theslagzone,
•theprecipitationzone,
•thepenetrationzone,
•theunaffectedrefractoryzone.2.1.Theslagzone
Aftercooling,aglassyslaglayerisobservedatthebottomofthecrucible.ItscompositionchangeswithadecreaseinCaOandanenrichmentinSiO2.TheAl2O3contentremainsnearlyconstantwithandalusitebricksandshowsasmallincreaseinthecaseofbauxitebricks.2.2.Theprecipitationzone
Theprecipitationzoneisformedbyasuccessionofmonominerallayersofcrystalssurroundedbyglass.Theglasscontentmaybehighandislocallyvariable(30–80%).
Thesamemineralsuccessioncanbeobservedinbauxiteandinandalusitebricks.Fromthepenetratedzonetotheslagzone,threesuccessivemonominerallayersareobserved:•corundumAl2O3,
•calciumhexaaluminateCaAl12O19(CA6),•calciumdialuminateCaAl4O7(CA2).
Thetextureandtheshapeofthelayersclearlyindicatesthatthecrystalswereprecipitatedslowlyfromaliquid4,5(theydonotresultfromacrystallizationduringcooling).Corundumfrom
1560J.Poirieretal./JournaloftheEuropeanCeramicSociety28(2008)1557–1568
Fig.3.Backscatteredelectronimagesofthetypicalmicrostructureofthebauxitebrickshowingtheporousnatureofbauxiteandabondmatrixmadefromamixofcorundum(A),mullite(M),aluminumtitanate(AT),titania(T)andglass(G):(a)lowmagnification(25×)and(b):highmagnification(500×)→microstructuresofagrainofbauxitetransformedintocorundum,(c)highmagnification(1000×)→thebondingmatrix(c;1000×).AT:(Al,Fe)2TiO5,T:TiO2andP:pore.
thefirstlayershowswell-formedcrystalsthatdifferclearlyfromthoseofthetransformedbauxite.TheCA6phasesarestillpresent,butinthecaseofanimportantcorrosionoftherefractory,theCA2phasesareabsent.2.3.Thepenetrationzone
Theviscousslaginvadesthematrixbycapillarypenetrationandmixeswiththepre-existingintergranularliquidbydiffusion.Thepenetrationofthecorrosiveliquidphasesleadstothesuper-ficialdissolutionoftheaggregates,sochangesaffectmainlythematrixwithaprogressiveincreaseintheglassphase.Fortheandalusitebrick,thelimitbetweenthepenetratedzoneandtheprecipitationzoneismoreregularthanforthebauxitebrick.Atthatzonelimit,dissolutionofmullitizedandalusitegrainsseemstobecompletedbythecorrosiveliquid,butlargebauxitegrainsconvertedtocorundummayremainbeyondintheprecipitationzone.
2.4.Therefractoryzone
Thiszoneiscomposedofunaffectedbauxiteorandalusiterefractories
3.Interpretationofcorrodedmicrostructures3.1.Equilibriumaspect
Inthezoneofcorrosion,theheterogeneoussystemrefrac-tory/slagisopenandexchangesmatterwiththesurrounding.Theconceptofthermodynamicequilibriumappliestoaclosedsystemwhichexchangesonlyheatandenergy.Itrequiresthechemicalpotentialofeachcomponentinallphasestobeequal.Whenasystemisopen,equilibriumisnottotal,butitcanbeappliedonthelocalscale.Theconceptof“localequilibrium”iswellestablishedintheliterature6,7andisafundamentalassumptioninmodelsofdiffusion-controlledreaction.
Inasolid–liquidrefractorysystem,chemicalexchangesoccurthroughtheliquidphase(diffusion,infiltrationandpercola-tion).Whensolid–liquidreactions(dissolution,precipitation)arefasterthanchemicaltransport,equilibriummotionmaybelocallyapplied:
•thesolidphasesarelocallyinequilibriumwiththeliquidwhichsurroundsthem;
•theGibbs’phaserulemaybeused;
J.Poirieretal./JournaloftheEuropeanCeramicSociety28(2008)1557–15681561
Fig.4.MicrostructureofcorrodedandalusiterefractorybyAl2O3–CaOslagattack.
•thechemicalmobilityentailsconcentrationgradients,whicharethedrivingforceofcorrosionandwilltendtobringthesystembacktowardsglobalequilibrium.Dependingonitslocalcomposition,theliquiddissolvesthesolidphaseswhicharenotinequilibriumwithitandprecipitatesnewphasesafteritbecomessaturated.3.2.Useofthephaserule
ThedegreeoffreedomF(variance)ofthesystemisgivenbythephaseruleofWillardGibbs.8Thefollowingequationgivestheusualmathematicalformofthephaserule:F=C+2−P
(1)
C:numberofcomponentsofthesystem;P:numberofphasespresentatequilibrium;2:numberofenvironmentalfactors(tem-peratureandpressure).
Whenthetemperatureandthepressurearefixed,theGibbs’phaserulereducestothefollowingequation:F=C−P
(2)
Thephaseruleappliesonlytoequilibriumstatesofasystem,whichrequirebothhomogeneousequilibriumwithineachphaseandheterogeneousequilibriumbetweenco-existingphases.Thephaseruledoesnotdependonthenatureandamountsofthephasespresent,butonlyontheirnumbers;nordoesitgiveinformationconcerningratesofreactions.Non-conformitywiththephaseruleistheproofthatequilibriumconditionsdonotexist.
Datafrommicrostructuralexaminations,describedabove,haveshowedthatasuccessionofzonesisobserved:theinitialrefractory,thepenetrationzone,theprecipitationzoneandtheremnantslag.Furthermore,theprecipitationzonemaycontainoneorseveralmonominerallayers.
Considerasanexamplethecorrosionofa3:2mullitizedandalusite-basedrefractorybyanAl2O3(50wt%)–CaO(50wt%)modelslag,at1600◦C.
3.2.1.Theinitialrefractory
Theinitialrefractoryiscomposedofasolidphase(3Al2O3–2SiO2)andaliquidphase(asilica-richglass)whichissaturatedwithmullite(P=2).ItcontainsonlyAl2O3andSiO2(C=2).ThedegreeoffreedomF(variance)isequalto0.
1562J.Poirieretal./JournaloftheEuropeanCeramicSociety28(2008)1557–1568
Fig.5.MicrostructureofcorrodedbauxiterefractorybyAl2O3–CaOslagattack.
Consequently,thecompositionoftheliquidphaseisconstantandisgivenbythesaturationsolubilityofthemulliteintheliquidphase.
3.2.2.Thepenetrationzone
Therefractoryispartiallypermeatedbytheslag.Whenthelimediffusesthroughtheinterstitialliquid,thenumberofcom-ponentsCincreasesto3whereasthenumberofphasesPremainsequalto2.Thedegreeoffreedombecomesequalto1,andthecompositionoftheliquidisnotconstantanymore.Theconcentrationsofalumina,limeandsilicavaryintheliquid.3.2.3.Theprecipitationzone
Inthiszone,locatedbetweentheslagandthezoneofimpreg-nation,newlycrystallinephasesprecipitateduringthereactionsrefractory/slag.TheliquidcontainsthreeoxidesAl2O3,CaO,SiO2;thenumberofcomponentsCisequalto3.ThedegreeoffreedomFcanneverbelessthan0underinvariantconditions.Consequently,thenumberofphasesPcannotexceed3:twosolidsandoneliquid.Whentwosolidphasescoexist,thevari-anceisequalto0andthecompositionoftheliquidisconstant.However,becauseofdiffusionandofthechemicalgradients,theconcentrationofanelementintheliquidvariesregularlydependingonthedistanceandthetimeperiod.Attheendofatimet,theconditionsofequilibriumbetweentwosolidphases
canexistonlyatagivendistancefromtheinitialinterface.Lastly,whenonlyonesolidphaseispresent,thevarianceisequalto1,andthecompositionoftheliquidcanvary.
Thenewphaseswhichcrystallineduringdissolution–precipitationprocesses9consistofdifferentsuccessivemonominerallayersseparatedbysharpboundaries.3.3.Predictionofreactionproductsatrefractory/slaginterface
Attheinitialstageofthereaction,onbothsidesoftheinitialinterface,thereisliquidslag(50%CaOand50%Al2O3)andasiliceousliquidwhichimpregnatethemulliteaggregatesoftheandalusite-basedrefractory.ThisinitialsituationisdescribedinFig.6.Formoresimplicity,considertheexampleofaslagcontainingtheelementAandarefractorycontainingtheelementB.Theslagandtherefractoryarecoupledaccordingtoaplaneinitialinterface.
Intheslag,allareliquid,theconcentrationofelementAis
A),andthatoftheelementBisequalto0.Intherefrac-high(CSlag
tory,composedofthephaseB,thereisalittleliquidwithahigh
B=solubilityofBintheliquid),whiletheconcentrationofB(CB
concentrationofAisequalto0.
Onbothsidesoftheinitialinterface,thereisa“step”ofchemicalconcentration.Thissituationisunstable,andthestep
J.Poirieretal./JournaloftheEuropeanCeramicSociety28(2008)1557–15681563
Fig.6.Initialstageofcorrosionbetweenarefractoryandaliquidslag.
willbetransformedintoagradientofconcentration:elementAoftheslagwillmigratetowardstheliquidoftherefractory,andelementBoftherefractorywillmigratetowardstheslag.Fig.7showstheevolutionofthereaction.
Considerthat,inthesystemA–B,existthedifferentphasesA,AB,AB2,andB.Theconcentrationsatequilibrium,intheliquid,areasfollows:
••solubilityconcentrations,oftherespectivelyphaseBintheofAliquidandBslag:intheCBB
equilibriumwiththeassemblyB+ABAliquidphaseBin
•concentrations,respectivelyofAand2:CBinABthe2/BandCliquidABphase
2/B
inequilibriumwiththeassemblyAB2+AB:CACBAB/AB2
andAB/AB2
.AslongastheconcentrationofAintheliquidremainsthanCAlower
AB(inequilibriumwiththephasesA+B),itwillbelocalized2in/B
thezoneofinfiltration.Theincreaseintheconcen-trationofAintheliquidandthedecreaseinBwhichdiffusestowardstheslag,involvesadissolutionofphaseB.
WhentheconcentrationinAexceedsCAbecomesstableandprecipitateswhilephaseAB2/B
,thephaseAB2Bdisappearsbydissolution.PhaseAB2remainstheonlystablesolidphaseaslongastheconcentrationofAintheliquidremainslowerthanCBAB/AB2
.Fig.7.Evolutionofthecorrosionofasolidrefractorybyliquidslag.Formationofazoneofimpregnation,reactionalmonomineralzonesanddisplacementoftheinterfaces.
Fig.8.Evolutionofthecorrosionofasolidrefractorybyliquidslag.Disappear-anceofthemonomineralzoneofABwhentheconcentrationofAisdecreasing
intheslag.
Thus,thereistheformationofamonomineralzoneofAB2.
Beyondthislimit,thephaseABprecipitatesandformsasec-ondmonomineralzone.Thelatterisgraduallydissolvedintheslag.
Variousmonomineralzonesseparatedbyboundariesareobtainedwhichmovegraduallywhileadvancingonrefractorymaterial.
Theoretically,inasemi-infinitesystem,thenumberofmonomineralzoneswhichareformedisequaltothenumberofintermediatecompoundslikelytobeformedbetweenthephasesAandB.Inpractice,inthelaboratorytests,thequantityofslagislimitedanditscompositionchanges.ThemigrationofcalciumtowardsrefractoryinvolvesadecreaseintheconcentrationofthiselementtionCBintheslagwhichcanbelowerthantheconcentra-AB/ABinequilibriumwiththeassemblyAB+AB2.PhaseABisnotstable2
anymore,andthecorrespondingmonomineralezonedisappearsasFig.8shows.
TheAl2O3–CaO–SiO2phasediagram9makesitpossibletodeterminewhicharethephaseslikelytoappearduringthecor-rosionofhighaluminabyAl2O3–CaO.Italsomakesitpossibletopredictthesuccessionofthereactionalzonationsforeachkindofrefractories:
•mullitizedandalusite-basedrefractory:slag/dialuminateofcalcium/hexaaluminateofcalcium/corundum/mullite
•bauxite-basedrefractory:slag/dialuminateofcalcium/hexaaluminateofcalcium/corundum
•alumina-basedrefractory:slag/dialuminateofcalcium/hexaaluminateofcalcium/corundumForexample,Figs.9and10showmicrostructuresofthepre-cipitationzonesofbauxiteandandalusiterefractoriesaftercorrosion.Thealterationoftherefractorymicrostructurescanbeexplainedbydissolution–precipitationprocessesinsidealiquidphase.5Severalminerallayerscanbeobserved.
ThesamesuccessionwillbeobservedforallthetypesofslagaslongastheirinitialcompositiondoesnotdiffertoomuchfromaratioC/A+Scloseto1.Thiszonationcorrespondstothemax-imumnumberofobservablemonomineralzones,knowingthat
15J.Poirieretal./JournaloftheEuropeanCeramicSociety28(2008)1557–1568
Fig.9.CorrosionofbauxitebrickbyAl2O3–CaOslag;backscatteredelectronsSEMmicrographs.(A)Transitionbetweenthethreemonominerallayersoftheprecipitationzoneand(B)neogeniclayermadeoflargewell-formedcorundumcrystalsdevelopedattheexpenseofsmallbadlyformedcorundumissuedfromthetransformationofabauxitegrain.C:corundum;CA2:calciumdialuminate;CA6:calciumhexaaluminate.Thelight-greybackgroundrepresentsthehigh-temperatureliquidphasepartiallyrecrystallizedduringcooling.
Fig.10.CorrosionofandalusitebrickbyAl2O3–CaOslag;backscatteredelectronsSEMmicrographs.(A)Transitionbetweenthecalciumhexaaluminate(CA6)andthecorundumlayersand(B)transitionbetweenthecorundumlayeroftheprecipitationzoneandtherefractory(mullite+glass)C:corundum;CA2:calciumdialuminate;CA6:calciumhexaaluminate;M:mullite.Thelight-greybackgroundwiththeneedle-likecrystalslocalizedinthecorundumlayerin(A)representsthehigh-temperatureliquidphasepartiallyrecrystallizedduringcoolingandconvertedtoanorthite(CAS2)andresidualglass.
theevolutionofthecompositionoftheslagduringthereactioncanmakethemostexternalzonestodisappear.4.Determinationofthecompositionprofilesoftheliquidphaseathightemperature4.1.Method
Thegradientsofconcentration,whichexistintheliquidphaseathightemperaturearethedrivingforcebehindcorrosionpro-cessesathightemperature.Unfortunately,twophenomenamakeitdifficulttodeterminethecompositionofthisliquid.•Ontheonehand,thepartialcrystallizationoftheliquidduringcoolingdoesnotmakeitpossibletoassimilatethecompo-sitionofresidualglass(whichcanbedeterminedbyEDSanalysis)withthatoftheliquidwhichexistedathightem-perature.TheonlyrepresentativeanalysiswouldbeanEDSmappingofazoneincludingresidualglassandthecrystalsformedduringcooling.
•Inaddition,theexistenceofmonomineralzoneswithnewlyformedsolidphasesintheliquidmaketheanalysesbymap-pingnon-representative,since,theyintegratenotonlythecrystalsformedduringcoolingandresidualglass,butalsothecrystalsnewlyformed.Oneofthepossibilitiesconsistsincarryingoutafastquenchattheendofthecorrosiontesttolimitthecrystallizationoftheliquidduringcooling.Undertheseconditions,theonlycrys-tallizedphasesareduetocorrosionandthemicroanalysesofglassbetweenthecrystalsarerepresentativeofglassathightemperature.
Concurrentlywiththisdirectmethod,anindirectmethodcanbeimplemented.Itconsistsinusingtheanalyses(obtainedbymapping)whicharecarriedoutonthetotalityofthecorrodedzone.Theresultsareinterpretedusingthephasesdiagramsandtheconceptof“localequilibrium”.
Fig.11showstheprincipleofthemethod.Withintheframe-workofthe“localequilibriumconcept”,theinformationwhichisprovidedbythephasediagramsislimited:
J.Poirieretal./JournaloftheEuropeanCeramicSociety28(2008)1557–15681565
Fig.11.Determinationofthecompositionoftheliquidat1600◦CforananalysedzonerepresentedbypointM(thickline:1600◦Cisothermline).
•thepointLisrepresentativeofthecompositionoftheliquidat1600◦C;
•thecompositionrepresentedbythepointMcorrespondstoanassemblageofaliquidandasolidphaseat1600◦C.ThediagramAl2O3–CaO–SiO2givesnodirectinformationonthecomposition,neitheroftheliquid,norofthesolidcor-respondingtothepointM.Itcannotbeusedlikeadiagramofthermodynamicequilibrium.However,itsuseasaternarydiagramofcompositionremainsvalid.Asurfaceanalysedbymappingwiththescanningelectronmicroscopy(SEM)consistsofliquidandnewlyformedsolidsduringcorrosionat1600◦C.Thosecanbedistinguishedfromthephasesformedbythecrys-tallizationofglassduringcooling.
Forananalysedzone,representedbythepointM,inwhichthesolidphaseisthecorundum(pointS),theliquidat1600◦CisrepresentedbythepointLobtainedbytheintersectionofthesegmentSMwiththeisotherm1600◦Cofthediagram.TheproportionofliquidisgivenbytheratioMS/LS,andthecom-positionofthisliquidisdeducedfromthepositionofthepointLinthetriangleofcomposition.
Inacertainnumberofcases,theanalysedsurfaceissitu-atedonseveralzonesofreactionandcontainsseveralphases:forexample,mullite+corundum,orcorundum+CaO.Instrictlyspeaking,itwouldbenecessarytoconsidertherelativepropor-tionofthetwophasesandtoplacethepointrepresentativeofthesolidinproportiononthesegmentwhichjoinsthesetwosolids.
4.2.Validationofthemethodandresults
Compositionprofiles(chemistryasafunctionofdis-tancefromtheinitialinterface),etablishedforthemullitizedandalusitebasedrefractoryincontactwithaAl2O3–CaOslag,bythedirectmethod(quenchoftheliquidphaseattheendofthecorrosiontest)andtheindirectmethod(conceptoflocalequi-libriumappliedtophasediagram)aregiveninFig.12.Thedataobtainedbythesetwomethodsareinagreement.
Acrossthemodifiedarea(zoneIIandIII),theliquidcom-positionpresentsgradientsofconcentrationconnectingthecompositionoftheinterstitialliquidintherefractorytotheslag.Thechemicalexchangesoccurthroughtheliquidphase.Dependingonitslocalcomposition,theliquiddissolvesthesolidphaseswhicharenotinequilibriumwithitandprecipitatesnewphasesafteritbecomessaturated.10
Fig.13showsanothercompositionalprofileoftheliq-uidphaseassociatedwiththezonationofmineralsolidphasespresentatatemperatureof1600◦C(mullitizedandalusiterefrac-tory,Al2O3–CaOslagandquench).
Foreachzone,theequilibriumconstants,thenumberofphasesinequilibriumandthevarianceofthesystemaredeter-mined.
4.2.1.Zoneoftheinitialrefractory
Atthisdepth,CaOdoesnotinfiltrate.Theliquidiscom-posedofAl2O3andSiO2.As[Al2O3]+[SiO2]=1,aluminaand
1566J.Poirieretal./JournaloftheEuropeanCeramicSociety28(2008)1557–1568
Fig.12.Compositionalprofileoftheintergranular-liquidphaseintheandalusiterefractory(a:experimentalvalues,b:obtainedwiththeAl2O3–CaO–SiO2phasediagram).
silicacontentsarefixed.Theliquidissaturatedwithmullite,thesaturationisdefinedbytheequilibriumconstantKMofthereaction:
Al6Si2O13=3[Al2O3]+2[SiO2]KM=[Al2O3]3·[SiO2]2
(I)
graduallydissolvesuntilittotallydisappearsattheboundaryseparatingthezonesofpenetrationandprecipitation.Thecom-positionoftheliquidphaseisnotconstantanymoreandthedegreeoffreedombecomesequalto1.
4.2.3.Boundarybetweentheimpregnationzoneandtheprecipitationzone
Twomineralphasescoexist:residualmulliteandneoformedcorundum.Theliquidphaseissimultaneouslyinequilibriumwithcorundumandmullite(C/Mequilibrium).Thecorundumsaturationisexpressedbythereactionconstant:Al2O3=[Al2O3]
KC=[Al2O3]
(II)
·means“inthesolidstate”and[·]“dissolvedinaliquidphase”Theliquidcompositionisthenconstantandthedegreeoffreedomis0.
4.2.2.Impregnationzone
CaOinfiltratestheinterstitialliquid.Asaconsequence,theliquidcompositionwillnotbeinequilibriumwithmullite,which
Al2O3andSiO2contentsarebothconstant:
1/2KM−1
[Al2O3]C/M=KCand[SiO2]C/M=KC
KC
Astheliquidcontainsonlythreespecies,theconcentrationofCaOcanbedeterminedbymeansofthefollowingequation:[Cao]C/M=1−([Al2O3]C/M+[SiO2]C/M)
Itthusappearsclearlythatthecontentsofthethreecon-stituentsoftheliquidarefixedattheboundarybetweenthezonesofprecipitationandpenetration.Thedegreeoffreedomisequalto0.
Thisresultisconsistentwithdataobtainedfromcompositionprofilespreviouslyestablished(eitherbydirectanalysisofglassorusingaCaO–Al2O3–SiO2diagram)whichrevealedtheexis-tenceofaconstantcompositionatthisinterfacewhateverthenatureoftheslag.Intheprecipitationzone,afirstmonominerallayercontainingcorundumformedduringcorrosionat1600◦Cisobserved.Equilibriumofliquidwithcorundumisdefinedbyreaction(II)mentionedabove.ItfollowsthatAl2O3contentisfixedinthiszone([Al2O3]C=KC),andconcentrationsofCaOandSiO2mustinverselyvarybecausetheirsumhastoremainconstant.Itmustbenotedthatcorundumisreallystableonlynearthesurfaceoftherefractorywhereitprecipitates,while
Fig.13.Anothercompositionalprofileoftheliquidphaseassociatedwiththezonationofthemineralsolidphasespresentat1600◦C(mullitizedandalusiterefractory,Al2O3–CaOslag,quench).
J.Poirieretal./JournaloftheEuropeanCeramicSociety28(2008)1557–15681567
Fig.14.Viscosityprofilesoftheliquidphaseinthetestedandalusite(a)andbauxite(b)refractories,accordingtoUrbain’smodel.(I)slagzone,(II)precipitationzone,(III)penetrationzone,and(IV)unaffectedrefractory.Initialslag–refractoryinterfaceislocatedatd=0mm.NotethatzoneIVin(b)islesswidethanin(a)becauseofdeeppenetrationofslaginbrickB.
farfromthecorrosionfront,itdissolvestomaintainaconstantAl2O3contentintheliquidandthustomakeupfortheincreaseintheCaOcontent.4.2.4.Precipitationzone
•Monominerallayerofcorundum
AlongtheCA6layer,concentrationsofAl2O3,CaOandSiO2arevariable.Thedegreeoffreedomisequalto1.
•Boundarybetweenthecorundumandthehexaaluminateofcalciumlayers
AttheinterfacebetweenlayersofcorundumandCA6,theliquidissaturatedwiththesetwophases,thuscorrespondingtoequilibriumbetweenreaction(II)and(III): =[Al2O3]6·[CaO] (III) TheconcentrationsofCaOandAl2O3aredefinedasfol-lowsatthisinterface:[Al2O3]C/H=KC and [CaO]C/H= KH6KC As[Al2O3]+[CaO]+[SiO2]=1,theSiO2concentration isalsodeterminedattheinterface.Thedegreeoffreedomisequalto0. •Monominerallayerofhexaaluminateofcalcium AlongtheCA6layer,concentrationsofAl2O3,CaOandSiO2arevariable.Thedegreeoffreedombecomesequalto1. •Boundarybetweentheprecipitationzoneandtheslagzone CA6disappearsattheboundaryinterface.Beyondthisinterface,thereisnomoreliquidphase.4.3.Viscosityoftheliquidphases Thegradientofthechemicalcompositionoftheintergranularliquidphaseplaysafundamentalrole.Theviscosityoftheliquidphaseisthesecondparameter,whichinfluencesthemigrationofthespeciesinthisliquid. ViscosityηwascalculatedaccordingtoUrbain’smodel11bythefollowingequation:ATexp(103B/T),AandBaretwoparam-etersdependingonthecompositionoftheglass.TheviscosityoftheintergranularliquidphaseisshowninFig.14for(a)and(b)andalusiteandbauxiterefractories. EDSanalysisoftheglassinthetworefractoriesintegratesalltheelementsoftheslag–refractorysystemincludingtheimpurities.Forbauxiterefractory,inwhichthereisnoresid-ualslagzone(absenceofzoneIcorrespondingtothepartofrefractoryreplacedbyslag),alowviscosityoftheliquidphase,duetothepresenceinahighcontentofminorelements(amounting∼20–30%)suchasFe2O3,P2O5,TiO2,alkalineandearth–alkalineoxides,isobservedalongthemodifiedpartoftherefractory(areaextendingfromtheunaffectedzonetotheslagzone).Thisfactexplainswhythepenetrationzoneiswiderinbauxitethaninandalusiterefractory.Furthermore,thefractionofimpuritiescomingfromrawmaterialsmaybenegligibleintheandalusitebrick,sothattheliquidphaseisconsideredtobepredominantlyCaO+Al2O3+SiO2. Forandalusiterefractory,theliquidviscosityisconstantalongtheslagzone(zoneI;μ≈1Pas)aswellasintheunaf-fectedrefractory(zoneIV;μ≈1570Pas).Fromtheunaffectedzone,aconsiderabledecreaseintheliquidviscosityisobserveduptotheprecipitationzone.Theliquidbecomesmorefluidnearthecorrosionfrontandeasilyinfiltratesthegrainboundariesleadingtothedissolutionofmostpresentfinephases.Asaresult,thedissolvedphasesbecomepartofthelocalliquid,thusincreas-ingtheliquidcontent.However,anexplanationforthelackofdeepslagpenetrationinandalusiterefractoryliesinthefactthatahighamountofviscousliquid(silica-richwithalowercontentofsecondaryoxides)isformedinthepartoftherefractoryincontactwiththeslag,whichsloweddownthepenetrationoftheslag. 5.Conclusion Thecorrosionmechanismsofrefractoriesbyliquidoxidesarefarfrombeingcompletelyknown.Thestudyofmicrostructures,whichimprovesourknowledgeofcorrosion,isextremelyuse-fultodeterminethemechanismsofchemicalattack.However, 1568J.Poirieretal./JournaloftheEuropeanCeramicSociety28(2008)1557–1568 themicrostructuresofcorrodedrefractoriesareverydifficulttointerpret. Inthispaper,anapproachbasedontheconceptoflocalther-modynamicequilibriumandtheuseofthephaseruleisproposedtoanalysethemicrostructures. Anexperimentalcorrosionstudyofhigh-aluminarefracto-riesbyanalumina–limemodelslagiscarriedouttoillustratethisapproach.Thepost-mortemanalysisofmicrostructuresaftertesting,revealedthedevelopmentofapenetrationzone,followedbyaprecipitationzoneformedofasuccessionofmonominerallayersandshowtheexistenceofcompositiongra-dientsintheinterstitialliquid.Thelocalchemicalequilibriumconceptmakesitpossibletoexplaintheobservedmineralzona-tion,andtoquantifytheproportionandcompositionoftheliquidathightemperaturefromchemicalprofiles,establishedbyanalyzingsuccessivezonesbymeansofscanningelectronmicroscopy. Thecompositionprofilesarecomparedtothoseobtainedbydirectanalysisoftheinterstitialglassinrefractoriesafterquenching. Theviscosityprofiles,estimatedbymeansofUrbain’smodelfromthecompositionprofilesoftheliquidphase,showedthattheviscosityoftheinterstitialliquiddeterminestheextensionofthepenetrationzoneinagivenrefractory. Theseresultsclearlyvalidatethisthermodynamicapproachwhichoffersnewprospectstodevelopmorecorrosion-resistantrefractories.12 References 1.Lee,W.E.,Characterisationofcorrosionmechanismsinrefractoriesbypost-mortemmicrostructuralanalysis.Br.Ceram.Proc.,1997,57,7–15.2.Ildefonse,J.P.,Gabis,V.andCesbron,F.,Mullitizationofandalusiteinrefractorybricks.KeyEng.Mater.,1997,132–136,1798–1801. 3.Qafssaoui,F.,Rˆoleeteffetdel’andalousitesurlecomportement`a lacor-rosiondesc´eramiquesr´efractaires`a hauteteneurenalumineparleslaitierssid´erurgiques,PhDThesis.UniversityofOrleans,France,2004. 4.Zhang,S.,Rezaie,H.R.,Sarpoolaky,H.andLee,W.E.,Aluminadissolutionintosilicateslag.J.Am.Ceram.Soc.,2000,83(4),7–903. 5.Guha,J.P.,Reactionchemistryindissolutionofpolycrystallinealuminainlime–alumina–silicaslag.Br.Ceram.Trans.,1997,96(6),231–236. 6.ThompsonJr.,J.B.,Localequilibriuminmetasomaticprocesses.InResearchesinGeochemistry,Vol1,ed.P.H.Abelson.JohnWiley&Sons,NewYork,19. 7.Mueller,R.F.,Mobilityofelementsduringmetamorphism.J.Geol.,1967,75,565–582. 8.Gibbs,J.W.,Equilibriumofheterogeneoussubstances.Trans.Conn.Acad.Sci.,1874,3,108–248; Gibbs,J.W.,Equilibriumofheterogeneoussubstances.Trans.Conn.Acad.Sci.,1878,3,343–524. 9.Gentile,A.L.andFoster,W.R.,PhaseDiagramsforCeramists.TheAmer-icanCeramicSociety,Columbus,OH,USA,1963,p.220. 10.Qafssaoui,F.,Poirier,J.,Ildefonse,J.P.,Hubert,P.andBenyaich,F., Microstructuralandphysicochemicalstudiesofcorrodedhigh-aluminarefractories.SilicatesInd.Ceram.Sci.Technol.,2005,70(7–8),109–117.11.Urbain,G.,Viscosityestimationofslags.SteelRes.,1987,58(3),111– 116. 12.Poirier,J.,Bouchetou,M.L.,Qafssaoui,F.andHubert,P.,Corrosionofhigh aluminarefractoriesbyAl2O3/CaOslagunderthermalcyclingconditions.Interceram.Int.(Part1andPart2),2006,55(4),270–272,and348–351. 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- xiaozhentang.com 版权所有 湘ICP备2023022495号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务