Ho-JinChoi,VassilisLiatsos,AminEl-Kholy,andBarryRichards1
Abstract.Thispaperdescribesanopenproblemintemporalplan-ning,namelytheproblemofrecoveringfromfailureincollapsingtimeintervals.WeillustratethisprobleminthecontextoftheparcPLANplanningsystemandshowitsfullcomplexitybycombiningtheprob-lemwithresourcereasoning.Wealsosummarisesomeoftheprogressmadetotacklethisproblem.
1Introduction
Apracticalplanningsystemshouldconcerntwolevelsofoptimalityinitsoutputplans:(1)obtaininganoptimalplaninthenumberofactionsgenerated;and(2)obtaininganoptimalscheduleintheusageoftimeandresources.TheseissuesofoptimalityhavebeencentraltothedesignofparcPLAN[8],atemporalplanningsystemwhichiscurrentlyunderdevelopmentatIC-Parc.
parcPLANfollowsaninterval-basedplanningparadigm[1].2Bothactionsandpropertiesareindexedexplicitlytointervals.More-over,thetraditional“oneactionatatime”assumptiondisappears.parcPLANaimstoproduceplanswhichmaximiseconcurrencyinactionexecutionsubjecttoavailableresources(e.g.,numberofrobotarms)andspecifictemporalconstraints.Thetaskofintegratingactionschedulingandresourceallocationpresentsaformidablecomputa-tionalproblem.
Inthispaperwedescribesomeofthedifficultproblemsfacedinplangeneration.Weshallfocus,inparticular,ontheareaofrecoveringfromcollapsingfailures[1,2,4,6].Forexample,AllenandKoomen’splanner[1]hasnostrategyforintroducingnewactionswhenthesetoftemporalconstraintsbecomesinconsistent.Whenthishappens,thereisnoclueastowhichsubgoalshaveledtothetemporalcon-tradiction.Heretheplannerhastoresorttoblindsearch.Plainlythisisanintractableprocess.Thereseemstobenodomain-independentstrategytosolvethisproblem.Theaimofthispaperistoclarifythisproblemwithaviewtoseekingastrategy.
Wefirstpresentinsection2therepresentationandplangenerationframeworkusedinparcPLAN;insection3wedescribetheproblemofrecoveringfromcollapsingfailure.Section4summarisestheprogresswehavemadesofartowardssolvingthisproblem.
2TheparcPLANArchitecture2.1Representation
InparcPLANbothpropertiesandactionsarerepresentedbytermsindexedtotimeintervals.Weusethenotationp@[start,end)tosaythatproperty(oraction)pholds(oroccurs)overthetimeinterval
action:move(Block,From,To,Arm)@[Start,End)conditions:1.on(Block,From)@[T1,Start),2.clear(To)@[T2,End),3.
clear(Block)@[T3,T4)effects:4.on(Block,To)@[End,T5),5.
clear(From)@[Start,T6)constraints:6.designates(Block,block),7.designates(Arm,arm),
8.
designates([From,To],[block,table
3
Theterm“collapsing”originatesfrom[1].
istocollapseallthesegoalssubjecttomaintainingtheconsistencyofcodesignationconstraintsandtemporalconstraints.Theresultofsuccessfulcollapsingisasetofactions,whichareusuallypartiallyspecifiedandpartiallyordered(representedbyasetofcodesignationandtemporalconstraints).Atthispointtheplannermovesintotheschedulingandresourcereasoningstep,wherethetaskistodeter-minewhethertheactionscanbemadefullyspecificandscheduledsubjecttotheavailableresources.
2.3Example
Toillustratetheplanningprocess,letusseehowtheproblempre-sentedinfigure1issolvedinparcPLAN.
Intheinitialstatethefollowinggoalshavenopotentialcollapser.
on(a,b)@[T7,20)on(b,c)@[T8,20)on(c,t1)@[T9,20)
Letussupposethatthegoal,on(a,b)@[T7,20),isselectedfirstandthattheactionmove(a,1,b)@[S1,E1)isintroducedtoachievethisgoal.X1isanobjectvariablewhichcanbeeitherablockoratableposition,butcannotcodesignatewithblocka(X1a).
Facts:
Goals
F1.on(a,t2)@[0,T1)G1.on(b,c)@[T8,20)F2.on(b,t1)@[0,T2)G2.on(c,t1)@[T9,20)F3.on(c,a)@[0,T3)G3.on(a,X1)@[T12,S1)F4.clear(b)@[0,T4)G4.clear(b)@[T13,E1)F5.clear(c)@[0,T5)G5.clear(a)@[T14,T15)
F6.clear(t3)@[0,T6)F7.on(a,b)@[E1,20)
F8.clear(X1)@[T10,T11)
Figure3.Planstateafterintroducingmove(a,X1,b)@[S1,E1)
Bythisactionintroduction,thestateoffactsandgoalsisupdatedbyaddingtheeffectsandconditionsoftheactionappropriately.Theupdatedstateispresentedinfigure3.Sincethestateoffactsandgoalshaschanged,someofthegoalswhichpreviouslyhadnopotentialcollapsermayhaveoneintheupdatedstate;andsomeofthenewlyaddedgoalsmayhavenopotentialcollapser.
Intheupdatedstate,thefollowinggoalshavenopotentialcollapser.
on(b,c)@[T8,20)on(c,t1)@[T9,20)clear(a)@[T14,T15)
Continuingactionintroduction,theplannerreachesapotentiallycol-lapsiblestateafterintroducingtheactions,
move(b,X2,c)@[S2,E2)(wheremove(c,3,t1)@[S3,E3)(whereX2X3b)cand).
Thepotentiallycollapsiblestateispresentedinfigure4.Inthisstateeverygoaliscollapsible,asindicatedinthefollowinglist.1.G1cancollapsewithF1(ifX1=t2)orF7(ifX1=b)
2.G2cancollapsewithF4orF8(ifX1=b)orF12(ifX3=b)3.G3cancollapsewithF10(ifX2=a)orF12(ifX3=a)4.G4cancollapsewithF2(ifX2=t1)orF9(ifX2=c)
5.
G5cancollapsewithF5orF8(ifX1=c)orF10(ifX2=c)
Facts:
Goals
F1.on(a,t2)@[0,T1)G1.on(a,X1)@[T12,S1)F2.on(b,t1)@[0,T2)G2.clear(b)@[T13,E1)F3.on(c,a)@[0,T3)G3.clear(a)@[T14,T15)F4.clear(b)@[0,T4)G4.on(b,X2)@[T18,S2)F5.clear(c)@[0,T5)G5.clear(c)@[T19,E2)F6.clear(t3)@[0,T6)G6.clear(b)@[T20,T21)F7.on(a,b)@[E1,20)
G7.on(c,X3)@[T24,S3)F8.clear(X1)@[T10,T11)G8.clear(t1)@[T25,E3)F9.on(b,c)@[E2,20)
G9.clear(c)@[T26,T27)
F10.clear(X2)@[T16,T17)F11.on(c,t1)@[E3,20)F12.clear(X3)@[T22,T23)
Figure4.Collapsibleplanstate
6.G6cancollapsewithF4orF8(ifX1=b)orF12(ifX3=b)7.G7cancollapsewithF3(ifX3=a)orF11(X3=t1)
8.G8cancollapsewithF8(ifX1=t1)orF10(ifX2=t1)orF12(ifX3=t1)
9.G9cancollapsewithF5orF8(ifX1=c)orF10(ifX2=c)Duringthecollapsingsteptemporalconstraintsaregeneratedtomakeintervalsassociatedwithconflictingpropertiesdisjointandtoensureeachgoalintervalislocatedintheintervalofoneofitspotentialcollapsers.Thetaskhereistocollapseallthesegoalsconjunctivelysubjecttomaintainingtheconsistencyofthetemporalandthecodes-ignationconstraints.(Asonecansee,collapsingisanintractabletaskduetotheneedtosolveanexponentialnumberoftemporalcon-straintnetworks[3].)InourexamplecollapsingsucceedswiththeassignmentX1=t2,X2=t1,andX3=a.
Finally,parcPLANmovestotheschedulingandresourcereasoningsteptocheckwhetherthegeneratedplanisexecutablewiththere-sourcesavailable.Ifthreerobotarmsareavailable,theplanshowninfigure5canbeobtained,whichlocatesthethreeactionsconcurrently.
arm1c a t1arm2b t1 carm3
a t2 b1
2
3
4
5
6
Figure5.Asolutionusing3arms
3TheProblemofFailureRecovery
Therearebasicallytwotypesoffailureintheplanningprocessde-scribedabove.
1.Failureincollapsing
2.FailureinschedulingwithrespecttoavailableresourcesCollapsingfailsbecauseofaninconsistencyinthetemporalconstraintnetworkorinthecodesignationconstraints;schedulingfailsbecauseitisimpossibletofindaviableschedulefortheactionssubjecttotheavailableresources.TheproblemwithanearlierversionofparcPLANisthatitwouldgiveupplanningwheneitherofthesetwofailuresoccurred.
3.1Failureincollapsing
Whentheplannerentersthecollapsingstep,everygoalinthegoallisthasatleastonepotentialcollapser.Thiscondition,althoughnec-essary,isnotsufficienttoguaranteethatallthegoalscanbeachievedconjunctivelybytemporalpersistence.Thereasonisthatinteractionsarenottakenintoaccountwhencheckingpotentialcollapsers;col-lapsingagoalwithafactmayruleoutcollapsingothergoals.Belowwepresenttwoexamplesofcollapsingfailure:acaseoffailureduetoaninconsistencyincodesignationconstraintsandacaseoffailureduetoaninconsistencyintemporalconstraints.
Inconsistencyincodesignationconstraints
Theplanningprobleminfigure6addressesthefirstcase.Itshowsanexamplewherecollapsingrequiresanobjectvariabletocodesignatewithtwodifferentvalues.
a
abcbct1
t2
t3
t1
t2
t3
Initial State
Goal State
Figure6.Anotherblocksworldexample
Theplannerreachesapotentiallycollapsiblestate(showninFigure7)afterintroducingthefollowingactions,
move(b,X1,c)@[S1,E1)(whereX1bmove(c,X2,t1)@[S2,E2)(whereX2
b)).
andFacts:
Goals
F1.on(a,b)@[0,T1)G1.on(a,b)@[T7,20)F2.on(b,t3)@[0,T2)G2.on(b,X1)@[T12,S1)F3.on(c,t2)@[0,T3)G3.clear(b)@[T13,T14)F4.clear(a)@[0,T4)G4.clear(c)@[T15,E1)F5.clear(c)@[0,T5)G5.on(c,X2)@[T18,S2)F6.clear(t1)@[0,T6)G6.clear(c)@[T19,T20)F7.on(b,c)@[E1,20)
G7.clear(t1)@[T21,S2)
F8.clear(X1)@[T10,T11)F9.on(c,t1)@[E2,20)
F10.clear(X2)@[T16,T17)
Figure7.Apotentiallycollapsiblestateduringsolvingtheproblemin
figure6
Althougheachgoalisindividuallycollapsible,aninconsistencyarisesinthecodesignationconstraintswhenconsideringallthegoals.1.(X1=t3)(X1=c)topotentiallycollapseG22.(X2=b)topotentiallycollapseG3
3.(X2=t2)(X2=t1)topotentiallycollapseG5
CollapsinggoalG3withF10requiresvariableX2tobeboundtob,whilecollapsinggoalG5withF3requiresthesamevariableX2tobeboundeithertot2ortot1.Noconsistentlabellingexistsfortheobjectvariablesintroduced.Hence,collapsingfailsevenwithoutcheckingtemporalconstraints.
Whenafailureoccurs,theplannercaneither(1)backtracktoapre-viouschoicepointtochooseadifferentactionoperatorforachievingagoal,or(2)introducenewactionsintothefailedplan.Wearepar-ticularlyinterestedinthesecondcase,wheretherelevantgoalsarethosewhichwereinvolvedincollapsing;oneormoreofthemmustbeachievedbyintroducingnewactions.Thedifficultyistoidentifygoalswhichneedtobeachievedbyactionintroductionsinceeverygoalinthefailedstatehasapotentialcollapser.
Inconsistencyintemporalconstraints
Theexampleinfigure8addressesthecaseoffailureduetoanincon-sistencyintemporalconstraints.
acabbct1
t2
t3
t1
t2
t3
Initial State
Goal State
Figure8.Yetanotherblocksworldexample
Forthesakeofthisexample,supposethatweaddtothemoveactioninfigure2temporalconstraintswhichrestrictthedurationoftheactiontorangefrom2to4timeunitsasfollows.
EndStartStart++24(sets(setsthethelowerupperbound)End
bound)
Forthisexampletheplannerreachesapotentiallycollapsiblestateafterintroducingthefollowingactions.
move(a,X1,b)@[S1,E1)move(b,X2,t1)@[S2,E2)move(c,X3,t2)@[S3,E3)
Inthiscasethereexistsaconsistentlabellinginvolvedinthecodes-ignationconstraints,e.g.,1223,underwhicheverygoalhasapotentialcollapser.Thisassignmentresultsinassertingthefollowingtemporalconstraints(amongothers).
1.S3S1+1(blockchastobeclearbeforeitismoved)2.S2S3+1(blockbhastobeclearbeforeitismoved)3.E2S2+2(lowerboundonactionduration)
4.
E1E2+1(blockacannotbeplacedonblockbuntilblockbhasbeenmoved)
5.S1+4E1(upperboundonactionduration)
From(1),(2),(3),(4)wecandeducethatE1S1+5,whichcon-tradicts(5).Thesetoftemporalconstraintsisinconsistent;therefore,collapsingfails.
Again,wewishtohavetheplannerproceedbyintroducingfurtheractionstorecoverfromthefailure.Butwhichgoal(s)tochooseisthequestion.Itisanopenissuewhetherthereisadomain-independentstrategytorecoverfromsuchanimpasseduringatemporalplanningprocess.
3.2Failureinschedulingwithavailableresources
Theresultofsuccessfulcollapsingisasetofactions,whichareusu-allypartiallyspecified(e.g.,duetothechoicesremainingincodesig-nationconstraints)andpartiallyordered(e.g.,asrepresentedbythe
minimalnetworkofthetemporalconstraints).Atthispointthetaskistodeterminewhethertheactionscanbemadefullyspecificandscheduledsubjecttotheavailableresources.Thetaskisessentiallyadisjunctiveschedulingproblemcomplicatedbythreeinterdependentfactors,viz.thenumberofavailableresources,actionoverlap,andactionduration.
Asolutiontothisresourcefeasibilityproblemhasbeenprovidedin[5]withanapproachwhichusesBooleanmeta-variablestolinktemporalandresourcereasoning.ThisisimplementedintheCLPlanguageECLPS.Empiricalstudiesindicatethattheproposedtechniquesignificantlyenhancesthesearchforplanfeasibilityandservestominimisetheeffortofgeneratingaplanusingleastnumberofactions.Returningtoourearlierexampleinfigure1,thethreeactionsappear-ingintheprevioussolution(seefigure5)canbere-scheduledasinfigure9ifonlytwoarmsareavailable.
arm1c a t1a t2 barm2
b t1 c1
2
3
4
5
6
7
Figure9.Asolutionusing2armsfortheprobleminfigure1
However,aproblemverysimilartothecollapsingfailureariseswhenitisimpossibletofindaviableschedulefortheintroducedactionssubjecttotheavailableresources.Intheplanningproblempresentedinfigure1suchacaseariseswhenonlyonearmisavailable.
Usingthemethodproposedin[5],resourcereasoningquicklydetectsthatitisnotpossibletofindaschedulewheretheactionscouldbeexecutedbyasinglerobotarm.Afailureisthensignalled,andcontrolisreturnedtotheactionintroductionstep.Againwefacethesameproblemofdecidingwhichgoal(s)tochoosetotriggerthenextcycleofactionintroduction.
4On-goingProgress4.1ControllingtheSearch
WehaveenhancedtheparcPLANimplementationtotakerecoveryactions(althoughrudimentaryatthisstage)incaseoneofthedis-cussedfailuresoccur.Inthissection,wedescribethesearchstrategywehaveusedforthisenhancedversionofparcPLAN.
Duringtheactionintroductionphase,ifagoalisfoundwhichtwoormoreactionoperatorscanachieve,achoicepointiscreatedontheactionoperatorselection.Choosingdifferentactionsrequirestheplannertoreturntosuchchoicepointsandtryalternativeactionoperatorstoachievethegoals.
Addingmoreactionstotheplanrequirestheplannertochooseoneofthegoals(whosecollapsewasunsuccessfullyattempted),applyactionintroductionandcontinueplanning.Currently,theplannerselectsagoalnon-deterministicallybycreatingachoice-pointongoalselection.
TheenhancedversionofparcPLANusesthedepthfirstiterativedeepening(DFID)searchstrategydescribedin[7],toexplorealltheoptionsavailable.Thedepthcutoffvalue,inourcase,isthenumberofactionsintroducedforaplan.Thus,theplannerwillsearchforallpossibleplanswithagivennumberofactionsfirst,andonlyifnoneoftheseplansisvalid,thecutoffvaluewillbeincrementedbyone;planningwillstartagain,thistimelookingforplanswithoneextraaction.
arm1
b t1 t3c a t1b t3 ca t2 b1
2
3
4
5
6
7
8
9
10
11
12
13
Figure10.Asolutionusing1armfortheprobleminfigure1
Fortheplanningproblemspecifiedinfigure1,planningforasinglerobotarmwouldfindallpossibleplanswith3actionsinconsistentduetofailureinresourcereasoning.Thereforethecutoffvaluewouldbeincreasedbyone,andplanningwillstartagain,thistimelookingforaplanwith4actions.Thistimeoneoftheseplans(seefigure10)isfoundtohaveascheduleofactionsexecutablebyasinglerobotarm.
Researchisnowfocusedonreducingthebranchingfactorongoalselectionbyanalysingfailureintemporalplanningandextractingthesetofconflictinggoals.
4.2UtilisingDecompositionMethod
In[3]anefficienttechniqueisdevelopedfortemporalreasoningdur-ingcollapsingthroughastrategyofconstructingdecomposedcon-straintnetworks.Thedecompositionstrategyusesanotionofincom-patibilityconnection,whichreferstoamaximalsubgraphconnectedthroughincompatibilityrelations(e.g.,domainrules)specifiedintheplanningdomain.Sincethecollapsingtaskisbasicallytheproblemofdeterminingsatisfiabilityofatemporaldatabasequery(TDBQ),theproposedmethoddividesaTDBQsuchthatfactsandgoalsofincompatibleoridenticalpropertytypesbelongtothesameparti-tion.Temporalconstraintsareclusteredaccordingtothesepartitions.Then,collapsingcanproceedbyfirstdecomposingaTDBQintonearly-independentsub-TDBQ’s,checkingeachofthemlocally,thentestingglobalconsistencyofthelocalresults.Topreservethecorrect-ness,thestrategyimposessomerestrictionsontemporalspecificationofactionoperatorsandplanningproblems.
Thismethodenhancestheperformanceofconstraintsolving,(1)bycontrollingthecombinatoricsoftemporalconstraintnetworks,and(2)byreducingthesizeoftemporalconstraintnetworksinvolved.Thedecompositionstrategyprovidesthebasisforreducingthenumberofactualnetworkstosolvebya“first-fail”principle.Ifasubnetworkisfoundunsatisfiable,forinstance,wecanimmediatelyconcludethatthenetworkisunsatisfiableregardlessoftheremainingsubnetworks.Theproposedmethodutilisesanumberof“smaller”networksinsteadofsolvingaglobalnetwork.Asaresult,constraintpropagationwasconcentratedmostlyonthepartsofanetworkthatarerelevanttoproblemsolving.Unnecessarypropagationofconstraintsisreducedandperformanceofcollapsingisenhanced.
Thedecompositionmethodprovidesanewpossibilitytowardstheproblemofrecoveringfromfailuresdescribedinthispaper.Sincecollapsingisperformedthroughdecomposedsubproblems,whenafailureoccursthereisabetterchancetoselectrightgoalsbynarrow-ingdowntheproblematicregionsatleast.Withoutsuchamethod,allpendinggoalsareequallyplausibletobechosenbecausetheprob-lematicregioncannotbeidentifiedeasily.Choosingawronggoalmayresultinintroducingredundantactionsandmakingproblemsolvingmoredifficult.Thedecompositionmethod,possiblywiththesupportofsomeheuristics,helpstheplannertoperformaglobalanalysisoverthefailedsituationandtodecidewhichlocalareastoresolveconflictsinanoptimalway.Thus,theadvantagesgainedbyanalysingconflictresolutioninaglobalmannerstudiedby[9]canbeentertainedsimilarlyinourframework.
5Conclusion
InthispaperwehavepresentedthefailurerecoveryprobleminthecontextoftheparcPLANtemporalplanningarchitecture.Inpartic-ular,wehaveexaminedtwodifferenttypesoffailurewhichariseinourtemporalframework.
FailureFailureinincollapsing
schedulingwithavailableresources
Althoughitisalwayspossibletofindsolutionswhenabruteforcesearchstrategy(likedepthfirstiterativedeepening)isapplied,ex-ploringtheentiresearchspaceisimpracticalevenformediumsizeproblems.
Wearehopingthattechniqueslikethenetworkdecompositionmethodcanbeusedtoidentifytheproblematicgoalsandhelptomakemore“informed”decisionsonwhichgoalsshouldberegardedasunachieved.
REFERENCES
[1]JamesF.AllenandJ.A.Koomen,‘Planningusingatemporalworld
model’,inProceedingsoftheEighthInternationalJointConferenceonArtificialIntelligence,IJCAI-83,pp.741–747,Karlsruhe,Germany,(1983).
[2]J.F.Allen,H.A.Kautz,R.N.Pelavin,andJ.D.Tenenberg,Reasoning
aboutPlans,MorganKaufmannPub.,1991.
[3]HoJinChoi,ControllingTemporalConstraintsinPlanning,Ph.D.dis-sertation,ImperialCollege,UniversityofLondon,1995.
[4]ThomasL.Dean,R.JamesFirby,andDavidMiller,‘Hierarchicalplan-ninginvolvingdeadlines,traveltimeandresources’,ComputationalIn-telligence,4(4),381–398,(1988).
[5]A.El-KholyandB.Richards,‘TemporalandResourcereasoningin
Planning:thePLANapproach’,inProceedingsofthe12thEuropeanConferenceonArtificialIntelligene,pp.614–618.JohnWileyandSons,Ltd.,(1996).
[6]J.C.Hogge,‘TPLAN:Atemporalinterval-basedplannerwithnovelex-tensions’,TechnicalReportUIUCDCS-R-87-1367,Dept.ofComputerScience,UniversityofIllinoisatUrbana-Champaign,(1987).
[7]R.E.Korf,‘Depth-firstiterative-deepening:Anoptimaladmissibletree
search’,ArtificialIntelligence,27,97–109,(1985).
[8]J.M.LeverandB.Richards,‘
PLAN:aplanningarchitecturewithparallelactions,resourcesandconstraints’,inProceedingsofthe9thInternationalSymposiumonMethodologiesforIntelligentSystems,pp.213–222,(1994).
[9]Q.Yang,‘Atheoryofconflictresolutioninplanning’,ArtificialIntelli-gence,58,361–392,(1992).
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- xiaozhentang.com 版权所有 湘ICP备2023022495号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务