搜索
您的当前位置:首页2014年四年级寒假班数学大纲

2014年四年级寒假班数学大纲

来源:小侦探旅游网
2014年四年级寒假班数学大纲 【四年级寒假我们主要学什么】:

全面提升计算能力,深入学习几何组合计数!

计算:多位数计算掌握巧算、速算方法;数表练习锻炼递推、周期性方法; 几何:格点与割补重点掌握毕克定理解决格点多边形求面积; 组合:包含与排除的思想,位置原理的应用;

计数:几何计数初步呼应秋季加乘原理与春季排列组合; 第五种运算:乘方的认知与运算,深入学习平方差公式!

【教学大纲】:四年级教学大纲详解

讲次 专题 内容简介 1、求解综合性的数表问题; 2、熟练掌握递推法、周期法在数表问题1 数表——从中的应用; 日历谈起 3、掌握数表问题两种思想:整体思想和独立思想; 1、规则的格点多边形求面积; 2 格点与割补 2、特殊的格点多边形求面积; 3、用毕克定理求格点问题; 1、掌握大数计算的基本方法:基准数法、凑整法、拆分法、找规律法; 3 多位数计算 2、位置原理的理解与应用; 3、速算方法训练,培养“数感”; 1、先包含再排除思维的应用训练; 4 包含与排除 2、容斥原理的理解与应用; 1、确定好分类与分步策略,加乘原理具5 几何计数初步 体应用; 2、重点练习各类“数格子”,数组合图计数 排列组合初步 ★★★☆☆ 形的方法; 3、归纳递推法在计数中的应用; 1、对于乘方的认知; 6 第五种运算 2、掌握乘方的运算与巧算; 3、深入学习平方差等公式; 7 期末测评 对寒假前六讲的知识进行全面的复习与考察,并对试卷进行分析讲解 计算 整除特征 ★★★☆☆ 100% 20% 组合 排列组合初步 ★★☆☆☆ 20% 计算 小数计算 ★★★☆☆ 100% 等积变形 几何 平移、旋转与★★☆☆☆ 对称一半模型 15% 计算 横式数字谜 数独 ★★★☆☆ 100% 板块 对应春季课程 难度 杯赛考查比 2013年四年级寒假班大纲解读详解

日历表的妙用

例题讲解

例1某年的七月份有4个星期五,5个星期三,这一年的7月31日不是星期四,那么这一年的7月1日为星期几?

[分析与解]: 因为七月份是大月,有

31天,

31÷7=4„„3,如果7月1日是星期日,那么7月31日是星期二,这样就有5个星期二,4个星期三,不符合题意,而7月31日不是星期四,所以7月31日是星期三,这时正好是4个星期五,5个星期三,因此这一年的7月1日是星期一。

例2某年某月有4个星期日,5个星期六,它的第一天不是星期五,也不是星期六,那么这个月的第一天是星期几?

[分析与解]: 如果这个月有28天,无论第一天是星期几,从星期日到星期六都只有4

个;如果这个月有29天,根据题意第一天是星期四,那么最后一天也是星期四,也就是说第一天是星期几,最后一天也是星期几,只存在一个5天,但第一天不是星期六;如果这个月有30天,根据题意第一天是星期四,那么最后一天是星期五,只有5个星期四,5个星期五,而星期六只有4个;所以这个月有31天。第一天是星期四,最后一天是星期六,有5个星期四,有5个星期五,有5个星期六。

例3在下列日历表中,请用 框出4个数,使其和为24,请说出 这4个数分别是几号?

[分析与解]:观察日历表可以知道,框出的四个

数对角的两个数的和相等,所以对角的两个数的和为24÷2=12,于是可知这4个数为:2,3,9,10。

例4 、2005年的元旦是星期六,那么2004年的元旦是星期几?

[分析与解]:因为2004年是闰年,所以2004年有366天,这样从2004年的元旦到2005

年的元旦一共367天,367÷7=52„„3,所以2004年的元旦是星期四。(想一想为什么不是星期一)

课内自测

1、某年的四月份有4个星期四,5个星期三,这年的四月一日是星期几?

2、某年三月份的植树节是星期六,那么这个月的最后一天是星期几?

3、某年的六月份有4个星期三,5个星期二,这一年的七月一日是星期几?

4、某年的五月份有4个星期三,5个星期一,这一年的五月一日可能是星期几?

5、某年的六月份有5个星期日,这一年的六月一日不是星期六,那么6月30日是星期几?

6、某年的三月有4个星期六,4个星期日,4个星期一,这个月的第一天可能是星期几?

7、在下列日历表中,请用框出4个数,使这4个数的和为96,这4个数是多少?

8、一个小月,有4个星期五,5个星期四,这个月的第一天是星期几?

9、今天是六月一日,昨天是星期三,那么十月一日是星期几?

10、今年的九月一日是星期二,那么今年的六月一日是星期几?

11、某年的九月份有4个星期一,5个星期二,这一年的十月一日是星期几?

学科:奥数

教学内容: 格点与面积

生活中我们常借助一些工具来迅速简便的解决一些问题,如为了能捕到鱼,人们制作了鱼钩和网。同样在数学的学习中,为了更好的解决问题聪明的人类也创造了一些“工具”。这一讲我们主要介绍利用格点求几何图形的面积。先来介绍什么是“格点”。见下图:

这是一张由水平线和垂直线组成的方格纸,我们把水平线和垂直线的交点称为“格点”,水平线和垂直线围成的每个小正方形称为“面积单位”。图中带阴影的小方格就是一个面积单位。

借助格点图,我们可以很快的比较或计算图形的面积大小。利用格点求图形的面积通常有两种思路,一是直接将图形分成若干个面积单位,然后通过计算有多少个面积单位来求图形面积;二是将某些图形转化成长方形的面积来求。当然还可以将这两种方法结合起来,求出某些较复杂图形的面积。

例1 计算下图中各图形的面积:

分析:先仔细观察图中的每个图形,选择方法。显然第一、三、六图可以直接数出包含多少个面积单位即可。而二、四、五图显然不适合用数单位面积的方法来求面积,可以采用虚线把这些图形扩展或割补成长方形,通过求长方形面积来求这些图形面积。

解答:

(1)图中长方形包括3×2=6(个)面积单位,所以它的面积为6。

(2)将图中平行四边形割补成一个长方形,长方形的面积为3×2=6,而平行四边形的面积等于长方形面积,所以平行四边形的面积为3×2=6。

(3)将图中三角形用虚线分成3块,它包含有1个面积单位和2个面积单位的一半,合起来有2个面积单位,所以它的面积为2。

(4)图中将三角形扩展成一个长方形,长方形的面积为3×2=6,而三角形面积为长方形面积的一半,则三角形面积为3。

(5)将图中梯形的互相平行的一组对边延长,补出一个和原来梯形方向颠倒,但面积一样的梯形,形成一个大的长方形。长方形的面积为(2+4)×3=18,而梯形的面积为长方形的面积的一半。所以梯形的面积为:(2+4)×3÷2=9。

(6)将图中梯形用虚线分成3块,它包含有5个面积单位和2个面积单位的一半,合起来有6个面积单位,所以它的面积为6。

例2 计算下面这个格点多边形的面积。

分析:这是一个不规则的多边形,不能直接求出它的面积。可用长方形的面积减去4

个直角三角形的面积,如图1所示;另外还可将该四边形分割成几块,如图2。

解答: 方法一:

3×4-(2×1÷2+2×1÷2+2×2÷2+3×1÷2)=6.5(面积单位) 方法二:

1×2÷2+1×3÷2+1×1÷2+3×1÷2+1×2=6.5(面积单位)

例3 相邻四点连成的小正方形面积为1平方厘米。

分别连接各点,组成下面12个图形,你发现有什么排列的规律? 算出各图形的面积。找出图形外面一周的点子数、中间的点子数与面积三者之间的关系。

分析:仔细观察图形:

横看,从左往右图形一周的格点数逐渐增多,中间的格点数不变; 竖看,从上往下图形一周的格点数不变,中间的格点数逐渐增多。 图形一周的格点数、中间的格点数与面积究竟有什么关系呢?我们可以将图形按中间没有个点、中间有一个格点和中间有两个格点进行分组列表分析。

第(1)组 图形编号 ① ② ③ ④

一周格点数 中间格点数 4 0 6 0 8 4 0 10 6 面积(平方厘1 2 3 米) 中间没有格点时,面积=一周格点数÷2-1 第(2)组 图形编号 ⑤ ⑥ ⑦ 一周格点数 4 6 8 ⑧ 14 中间格点数 1 1 1 1 面积(平方厘2 3 4 7 米) 中间有一个格点时,面积=一周格点数÷2+(1-1) 第(3)组 图形编号 ⑨ ⑩ 11 12 一周格点数 中间格点数 4 2 6 2 8 4 2 12 面积(平方厘3 4 5 8 米) 中间有两个格点时,面积=一周格点数÷2+(2-1) 解答:(1)中间格点数相同时,图形的面积随着一周的格点数增加而增加;当一周的格点数相同时,图形的面积同样随着中间的格点数增加而增加。

(2)各图形的面积见表格。

各图形面积的大小与一周的格点数、中间的格点数都有关系,格点图形的面积计算公式是:

图形面积=图形一周的格点数÷2+(中间格点数-1)

说明:格点图形的面积求法很灵活,不要死记公式,要具体题目具体研究。 例4 下图是一个漂亮礼盒的平面图,请你求出它的面积:

分析:这是一个组合图形,面积可分成几个部分来求。本图可分为两个三角形和一个长方形三部分。每一部分面积的求法,因图而异。如两个三角形需要扩展成长方形再求面积,而长方形只要直接数单位面积即可。

解答:左边三角形面积=4×4-1×2÷2-4×3÷2-4×2÷2=5; 右边三角形面积=4×4-1×3÷2×2-4×4÷2-1×1=4; 长方形的面积为6×2=12; 所以礼盒面积为:5+4+12=21

说明:此题还可以直接用公式,请你自己试一试。

例5 在下图中有21个点,每相邻三点构成一个单位面积的等边三角形,计算三角形ABC的面积。

分析:此题是一个三角形格点图。每三个相邻的格点构成一个正三角形,为一个面积单

位。三角形格点图形面积的计算类似于正方形格点图形面积的计算,可以直接数图形所包含的面积单位,也可将之转化为几个易求的三角形,在通过加减运算得到。此题中三角形ABC的面积不能通过直接数格点面积来求,可以把它扩展成三一个大三角形,再减;也可以把它分成几个小的三角形,然后再加。

解答:

方法一:给三角形ABC添加Ⅰ、Ⅱ及Ⅲ部分小的三角形,则得到由25个单位三角形构成的大三角形,现在只要分别求出Ⅰ、Ⅱ及Ⅲ三个小三角形的面积即可。

三角形Ⅰ是一个平行四边形的面积的一半,如图4中的虚线平行四边形。这个平行四边形包含6个面积单位,所以他的面积为6,三角形Ⅰ的面积为:

6÷2=3

同理,三角形Ⅱ及Ⅲ的面积分别为4和8,所以三角形ABC的面积为: 25-3-4-8=10(面积单位)

方法二:将三角形分成几个易求面积的三角形(如图3)。Ⅰ的面积为1×3=3,Ⅱ的面积可直接数为1,Ⅲ的面积为1×2=2,Ⅳ的面积为2×2=4,于是三角形ABC的面积为:3+1+2+4=10。

想一想:以三角形Ⅰ为例,为什么这里三角形的面积可以用1×3计算?可联系方法一中三角形Ⅰ面积的求法。

说明:关于三角形格点多边形的面积也有类似于正方形格点多边形的面积计算公式。可以按照例3的方法归纳总结,就可以得到三角形格点多边形面积的计算公式:

三角形格点多边形的面积=多边形内包含的格点数×2+多边形周界上的格点数-2。 例6 在下图中有45个正方形格点,过图中三点连一个三角形,并且至少有一条边水平或垂直。问共有多少个这样的格点三角形?

分析:如果要在图中找一个面积为8的格点三角形很容易,但是要求出有多少个这样的格点三角形就有些困难,不过功夫不负有心人,一定能找到方法。注意到待计数的格点三角形的底与高的乘积为16,所以可以分类计数。

解答:因为16=4×4=2×8=8×2,所以可以分为以下几类来计数:

(1)每个4×4的正方形中有4个直角三角形符合要求,总数为4×5=20(个); (2)每个2×8的长方形中也有4个直角三角形符合要求,总数为4×3=12(个); (3)符合要求的不是直角三角形的三角形有:

4×4,

状的有:5×7=35(个); 状的有:35个; 状的有:5×3=15(个);

状的有:15个;

8×2,

状的有:3×7=21(个); 状的有:21个;

2×8,状的有:3×3=9(个);

状的有:9个;

共有:(35+15+21+9)×2=160(个)

所以符合要求的三角形一共有:20+12+160=192(个)

阅读材料

有形状的数

最早把自然数和几何图形联系在一起的是古希腊数学家毕达哥拉斯。毕达哥拉斯把数描绘成沙滩上的小石子,又按小石子所能排列的形状,寻找自然数与正三角形、正方形、正五边形„„之间的关系。

毕达哥拉斯发现,当小石子的数目是1、3、6、10等数时,小石子都能摆成正三角形,他把这些数叫做三角形数;当小石子的数目是1、4、9、16等数时,小石子都能摆成正方形,他把这些数叫做正方形数;当小石子的数目是1、5、12、22等数时,小石子都能摆成正五边形,他把这些数叫做

正五边形数„„

毕达哥拉斯还摆出了其它多边形数。有趣的事,他还进一步发现了各种“形数之间的内在联系”。比如,每个大于1的正方形数都可以表示成两个相邻三角形数的和。

4=1+3,9=3+6,16=6+10,„„

反过来,任意两个相邻的三角形数相加,必然是一个正方形数,也就是平方数。 这从下面的图形中可以得到证实。

毕达哥拉斯借助生动的几何直观发现,第n个三角形数等于1+2+3+„+n,第n个正方形数等于n,„„根据这些规律,人们就可以写出很多很多的形数了。

2

练习题

1.计算下图中各多边形的面积(点与点之间的距离都是1厘米)

分析与解答:

(1)直接计数,图1中包含5个面积单位,所以它的面积为5; (2)直接计数,图2中包含6个面积单位,所以它的面积为6;

(3)将图3分为上下两部分,上面的长方形包含有6个面积单位,下面的平行四边形可以转化为一个1×2的长方形,所以面积为2。图3的面积为6+2=8(面积单位);

(4)图中包含2个面积单位和4个单位面积的一半,所以图4的面积为4;

(5)将图5按下图分割为上下两部分,上面的包含3.5个面积单位,下面的面积为3×1÷2=1.5(面积单位),所以图5的面积为5;

(6)直接计数,图6中包含7个面积单位,所以它的面积为7。 2.下图中喇叭、小猫、小狗的面积各是多少?

分析与解答:

(1)喇叭图中包含2个面积单位和2个面积单位的一半,所以它的面积为3;

(2)将小猫图分为左右两部分,头与身子部分的面积为(可直接计数)10,尾巴部分是一个平行四边形,它的面积与一个单位面积相同,所以小猫图的面积为11。

(3)小狗图面积的求法与小猫图形面积的求法相同,它的面积为6。 说明:此题还有其他的分割方法,请你自己想一想。 想一想:请你用格点图形面积的计算公式试求每一个图形的面积,你发现了什么?是不是每个图都可以用公式计算,哪个可以,哪个不可以,为什么?

3.求下图中梯形的面积。

分析与解答:这个梯形图的一周共有6个格点,中间共有16个格点,运用正方形格点图形的面积公式的:6÷2+16-1=18(面积单位)

想一想:还有其他方法吗?请你试做。 4.下图中三角形的面积

分析与解答:

方法一:这个三角形图的一周共有6个格点,中间共有13个格点,运用正方形格点图形的面积公式的:6÷2+13-1=15(面积单位)。

方法二:将三角形扩展成一个6×6的正方形时,增加了三个直角三角形,因为直角三角形的面积简单易求,所以我们将求三角形ABC的面积转化为求正方形的面积和直角三角形的面积,然后求差即可。

正方形的面积为36,左上角的直角三角形的面积为2×6÷2=6(面积单位),右下角的直角三角形的面积为3×6÷2=9(面积单位),右上角的直角三角形的面积为4×3÷2=6(面积单位),由此可得三角形ABC的面积:

36-6-9-6=15(面积单位)

5.下面图中有21个点,其中相邻的三点所形成的等边三角形的面积为1,试计算四边形的面积。

分析与解答:

方法一:这个四边形图的一周共有4个格点,中间共有5个格点,运用三角形格点图形的面积公式的:5×2+4-2=12(面积单位)。

方法二:加一条辅助线,将四边形分成下图中的2个三角形,左上的三角形面积为4×1=4,右下的三角形面积为4×2=8,所以四边形的面积为4+8=12。

6.计算下面三角形格点多边形的面积

分析与解答:

这个六边形图的一周共有7个格点,中间共有8个格点,运用三角形格点图形的面积公式:8×2+7-2=21(面积单位)。

7.计算下面三角形格点中多边形的面积。

分析与解答:

方法一:这个多边形图的一周共有10个格点,中间共有9个格点,运用三角形格点图形的面积公式的:9×2+10-2=26(面积单位)。

方法二:加辅助线将这个多边形分成如下图所示的三个三角形和一个平行四边形。左下角的三角形为一个面积为10的平行四边形面积的一半是5,右上角的三角形的面积为3(请你自己找出它所在的平行四边形),中间的等边三角形的面积为4×4=16,小平行四边形的面积为2,因此多边形的面积为:

5+3+16+2=26(面积单位)

8.下图中有16个格点,以图中三点为顶点连一个三角形,并且至少有一条边水平或垂直。问共有多少个这样的格点三角形,面积分别是多少?

分析与解答:以这16个格点中任意三点为顶点连成的三角形面积最多为整个图形面积的一半,即任一三角形的面积至多为3×3÷2=4.5(面积单位)。

面积为4.5的直角三角形有4个;

面积为4.5的非直角三角形有2×4=8(个); 面积为3×2÷2=3的直角三角形有4×4=16(个); 面积为3×2÷2=3的非直角三角形有6×4=24(个); 面积为2×2÷2=2的直角三角形有4×4=16(个); 面积为2×2÷2=2的非直角三角形有8×4=32(个); 面积为3×1÷2=1。5的直角三角形有4×6=24(个); 面积为3×1÷2=1。5的非直角三角形有4×6=24(个); 面积为2×1÷2=1的直角三角形有4×12=48(个);

面积为2×1÷2=1的非直角三角形有(4+8+8+4)×2=48(个); 面积为1×1÷2=0。5的直角三角形有4×9=36(个);

面积为1×1÷2=0。5的非直角三角形有(6+12+12+6)×2=72(个); 所以图中共有

4+8+16+24+16+32+24+24+48+48+36+72=352(个)格点三角形。 9.在下图中含有多少个格点正方形?

分析与解答:这个问题可分类讨论: 面积为1个单位面积的格点正方形面积为2个单位面积的格点正方形面积为4个单位面积的格点正方形

共有3×3=9个;

共有2×2=4个; 共有2×2=4个;

面积为5个单位面积的格点正方形 共有2个; 面积为9个单位面积的格点正方形只有1个。 所以图中共有格点正方形9+4+4+2+1=20(个)。

10.你知道下图中共有多少个三角形吗?每个三角形的面积各是多少?

分析与解答:图中共有8个三角形,每个三角形的面积分别为: 三角形ADE、BED的面积为4×3÷2=6; 三角形ADC、BCD的面积为4×4÷2=8; 三角形ACE、BCE的面积为6+8=14; 三角形ADB的面积为6×2=12; 三角形ABC的面积为14×2=28。

2014 课次 课题 学习目标 模块 中年级杯高年级杯升学赛 赛 考 考察比 考察比 察比 小数计算熟练掌握通过小数点移位制造公因数方法;能快速寻找隐藏1讲 计算 综合 公因数;掌握换元法 格点与割掌握图形割补思想;熟练运用图形加减计算不规则图形面2讲 几何 补 积;掌握毕克公式法解决格点问题 数表——3讲 从 思想渗透 日历谈起 第五种运4讲 熟练掌握乘方的定义,运算方法,性质;掌握平方差公式 计算 算 质数与合5讲 数 掌握因数倍数、质数合数定义;特殊质数(2,3,5); 12% 30% 14% 12% 15% 掌握与日历有关的长方形正方形数表计算问题;归纳与递推计算 14% 12% 15% 14% 12% 15% 12% 20% 15% 高年级重掌握有关特殊质数的简单构造和应用和分解质因数方法;了数论 点 初步 解有关分解质因数的数论问题 24% 包含与排6讲 掌握容斥原理公式和文氏图;能够解决包含与排除应用题 组合 除 7讲 期末测评 通过期末测试了解孩子寒假内容掌握情况 24% 综合 15% 1-3 月 4-6 月 7-9 月 10-12 月 关注:美国 关注:数学解题能力展示读者评选活动关注:杯赛季爆发,学而思杯、华关注:四升五顺(原迎春杯),含金量最高的杯赛之一 杯赛、走美、希望全面来袭 利过渡 竞赛 知识学习期:大知识提升期:量学习分 及时复 AMC 数学 知识总结期:数学思想方法、计数、几何知识运用期:杯赛模拟;将知识点数、数论、比例习新知识,加等知识储备;建立自信 应用到解题当中;学会解题技巧 几何、比 深难度, 例行程等新知为杯赛季到来识 做准备

因篇幅问题不能全部显示,请点此查看更多更全内容

Top