一选择题:(每道小题3分,共30分)
1.下列等式一定成立的是( )
A.916916 B.a2b2ab C.44 D.(ab)2ab 2.时钟上的分针匀速旋转一周需要60min则经过10min,分针旋转了 ( ) A、100
B、200
C、300
D、600
3.平面直角坐标系内一点P(-2,3)关于原点对称点的坐标是 ( ) A、(3,-2) B、(2,3) C、(-2,-3) D、(2,-3) 4.若式子x2有意义,则x的取值范围为( )
x3(A)x≥2 (B)x≠3 (C)x≥2或x≠3 (D)x≥2且x≠3
5.关于x的一元二次方程kx2
-6x+1=0有两个不相等的实数根,则k 的取值范围是( ) A. k≥9 B. k<9; C. k≤9且k≠0 D. k<9且k≠0 6.下列图形中,既是轴对称图形又是中心对称图形的是( )
_E _O _F
_N 图2 _M 7.如图2所示,EF为⊙O的直径,OE=5cm,弦MN=8cm,那么E、F两点到直线MN的距离之和等于 ( ) A. 12cm B. 8cm C. 6cm D. 3cm 8.下面是李刚同学在一次测验中解答的填空题,其中答对的是( ).
A、若x2
=4,则x=2 B、方程x(2x-1)=2x-1的解为x=1
C、若x2
+2x+k=0的一个根为1,则k=3 D、若分式x2-3x+2的值为零,则x=1,2
x-19..关于x的一元二次方程(a1)x2xa210的一个根是0,则a的值为( ) A、1 B 、-1 C、1或-1 D、0.5
10.已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米, 则⊙O的半径是( )A.3厘米 B. 4厘米 C. 5厘米 D. 8厘米
二.填空:(每小题3分,共24分)
1.若 a2b30,则 a22b 。
2.最简根式4a24a3b和b12ab6是同类根式,则a=__________,b=__________. 3.AB是⊙O直径,AB=4,F是OB中点,弦CD⊥AB于F,则CD=_________
4.如图所示,下列各图中, 绕一点旋转1800后能与原来位置重合。
C
A ·
O B
(1) (2) (3) (4) (5)
D 5..如图,AB是⊙O的直径,弦CD垂直平分OB,则∠BDC=__________ (5题) 6.△ABC内接于⊙O,∠ACB=36°,那么∠AOB的度数为__________
7.三角形两边长分别为3和6,第三边是方程x26x80的解,则这个三角形的周长是___。 8.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别,•随机从口袋中任取一只球,取得黄球的概率是_________.
三、解答题:(每小题4分,共24分)
1.、解下列方程:
(1)用直接开平方法解方程:2x2240 (2)用配方法解方程:x24x10
(3)解方程:3416x2x2x24
2.计算题:
(1).(4641238)22 (2). (2)2(2)18(13)0
1
3.、如图,画出△ABC关于原点O对称的△A1B1C1,并求出点A1,B1,C1的坐标。
A(-3,2)-3321-2-1OB(-2,-1)-1-2第12题123xyC(2,3)六:(本题8分)某商场销售一批名牌衬衣,平均每天可售出20件,每件衬衣盈利40元,为了扩大销
售,增加盈利,尽快减少库存,商场决定采取适当的降价措施. 经调查发现,如果每件衬衣降价1元,商场平均每天可多售出2件.
(1)若商场平均每天盈利1200元,每件衬衣应降价多少元?
(2)若要使商场平场每天的盈利最多,请你为商场设计降价方案.
四、(本题7分) 如图,⊙O的直径AB=4,∠ABC=30°,BC=43,D是线段BC•的中点。
(1)试判断点D与⊙O的位置关系,并说明理由;
(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线。
五 (本题7分)如图是从一副扑克牌中取出的两组牌,分别是黑桃1、•2、3、4和方块1、2、
3、4,将它们背面朝上分别重新洗牌后,•从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是多少?请你用列举法(列表或画树状图)加以分析说明.
2
因篇幅问题不能全部显示,请点此查看更多更全内容