学号:14班级:信息101姓名:赵
实验六单因素方差分析
实验目的:
1.掌握单因素方差分析的理论与方法;
2.掌握利用SAS进行模型的建立与显著性检验,解决有关实际应用问题.实验要求:编写程序,结果分析.
实验内容:3.43.5(选作)
程序:datae_amp3_4;
inputchj
a10.88a10.85a10.79a10.86a10.85
a10.83a20.87a20.92a20.85a20.83
a20.90a20.80a30.84a30.78a30.81a30.80a30.85a30.83a40.81a40.86a40.90a40.87a40.78a40.79
run;
procanovadata=e_amp3_4;/classchj;
学号:14班级:信息101姓名:赵modeldelv=chj;
run;
TheSASSystem18:50Saturday,December4,20121
TheANOVAProcedure
ClassLevelInformation
ClassLevelsValues
chj4a1a2a3a4表示一个因素chj,四个水平
Numberofobservations24样本值个数24
TheSASSystem18:50Saturday,December4,20122
TheANOVAProcedure
DependentVariable:delv
Sumof
SourceDFSquaresMeanSquareFValuePr>F
方差来源自由度平方和均方f=MS
Model30.30.11.310.3002
Error200.00.0
CorrectedTotal230.3
R-SquareCoeffVarRootMSEdelvMean
0.XXX.XXX.XXX.839583
SourceDFAnovaSSMeanSquareFValuePr>F
chj30.30.11.310.3002A/MSEp值
学号:14班级:信息101姓名:赵X计算可知检验假设H0:1234,fMSA/MSE1.31
pP(F(3,20)f)0.30020.05该值较大,因此认为这四种不同催化剂对该化工产品的得率无显著影响3.5
(1)程序:
datae_amp3_5;
inputkyjf
cards;a17.6a18.2a16.8a15.8a16.9a16.6a16.3
a17.7a16.0a26.7a28.1a29.4
a28.6a27.8a27.7a28.9a27.9
a28.3a28.7a27.1a28.4a38.5
a39.7a310.1
a37.8a39.6
a39.5
run;
procanovadata=e_amp3_5;
classkyjf;
modeltgl=kyjf;
run;
学号:14班级:信息101姓名:赵
TheSASSystem19:03Saturday,December4,20121
TheANOVAProcedure
ClassLevelInformation
ClassLevelsValues
kyjf3a1a2a3表示一个因素kyjf,三个水平
Numberofobservations27
TheSASSystem19:03Saturday,December4,20122
TheANOVAProcedure
DependentVariable:tgl
Sumof
SourceDFSquaresMeanSquareFValuePr>F
方差来源自由度平方和均方f=MS
Model220.910.915.72<.0001
Error2415.20.9
CorrectedTotal2635.1
R-SquareCoeffVarRootMSEtglMean
0.567XXXX0810.061280.XXX.951852
SourceDFAnovaSSMeanSquareFValuePr>Fkyjf220.910.915.72<.0001A/MSEp值由计算可知检验假设H0:123,fMSA/MSE15.72
因此认为在显著水平0.05下过去三年科研经费投pP(F(3,24)f)0.0001较小,
入的不同对当年生产力的提高有显著影响。
学号:14班级:信息101姓名:赵(2)
procanovadata=e_amp3_5;
classkyjf;
modeltgl=kyjf;
meanskyjf;
meanskyjf/tclmalpha=0.05;
meanskyjf/tcldiffalpha=0.05;
run;TheSASSystem19:03Saturday,December4,20127
TheANOVAProcedure
Levelof-------------tgl-------------
kyjfNMeanStdDev
因素kyjf的水平观测次数ni各总体均值i各总体样本标准差si
a196.80.8
a2128.30.8
a369.00.4
给出i置信度1的置信区间
TheANOVAProcedure
tConfidenceIntervalsfortgl
Alpha0.05
ErrorDegreesofFreedom24
ErrorMeanSquare0.640093
CriticalValueoft2.06390
95%Confidence
kyjfNMeanLimits
a369.20008.52599.8741a2128.13337.65678.6100a196.87786.32747.4282TheSASSystem19:03Saturday,December4,20129
TheANOVAProcedure
nij1yij/nisni2i(yj1iji)/(ni1)2
学号:14班级:信息101姓名:赵
tTests(LSD)fortgl
NOTE:ThistestcontrolstheTypeIcomparisonwiseerrorrate,notthee_perimentwiseerrorrate.
Alpha0.05误差平方自由度ErrorDegreesofFreedomna=24均方误差ErrorMeanSquareMS
0.640093
检验t值CriticalValueoftt0.975(273)=2.06390
表示显著差异Comparisonssignificantatthe0.05levelareindicatedby.
Difference
kyjfBetween95%ConfidenceComparisonMeansLimits
各因素比较均值差ij估计95%的均值差的置信区间
a3-a21.06670.24101.8923a3-a12.32221.45193.1925a2-a3-1.0667-1.8923-0.2410a2-a11.25560.52741.9837a1-a3-2.3222-3.1925-1.4519a1-a2-1.2556-1.9837-0.5274
估计结果求得19.2000,由表3.6知,MSE0.9
28.1333,36.8778,
(na)t0.975(24)=2.06390,n19,n2,12,n3,6,
i置信度1的置信区间it
(na)MS
/ni,it
(na)MS
故得生产能力增高量的均值1,2,3的置信度95%的置信区间分别为(8.5259,9.8741)(7.6567,8.6100)(6.3274,7.4282)
ij的置信度95%的置信区间为
11ijt(na)()MS1n1n2
(na)()MS
故得生产能力增高量的均值1,2,3的两两之差置信度95%的置信区间分别为
12:(-1.9837,-0.5274)13:(-3.1925,-1.4519)23:(-1.8923,-0.2410)
学号:14班级:信息101姓名:赵1显著大于3和2,2显著大于3.
procanovadata=e_amp3_5;
classkyjf;
modeltgl=kyjf;
meanskyjf/boncldiffalpha=0.05;
run;
下面给出均值差的同时置信区间
TheSASSystem19:03Saturday,December4,201219
TheANOVAProcedure
Bonferroni(Dunn)tTestsfortgl
NOTE:ThistestcontrolstheTypeIe_perimentwiseerrorrate,butitgenerallyhasahigherType
IIerrorratethanTukey'sforallpairwisecomparisons.
Alpha0.05
ErrorDegreesofFreedom24
ErrorMeanSquare0.640093
CriticalValueoft2.57364
Comparisonssignificantatthe0.05levelareindicatedby.
Difference
kyjfBetweenSimultaneous95%
ComparisonMeansConfidenceLimits
各因素比较均值差ij估计95%均值差的同时置信区间
a3-a21.06670.03712.0962
a3-a12.32221.23703.4074
a2-a3-1.0667-2.0962-0.0371
a2-a11.25560.34762.1635
a1-a3-2.3222-3.4074-1.2370
a1-a2-1.2556-2.1635-0.3476
学号:14班级:信息101姓名:赵设计思想:
对应程序:
实验结果:
实验体会:
因篇幅问题不能全部显示,请点此查看更多更全内容