您好,欢迎来到小侦探旅游网。
搜索
您的当前位置:首页八年级数学教案

八年级数学教案

来源:小侦探旅游网

  一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

  1.平移

  2.平移的性质:

  ⑴经过平移,对应点所连的线段平行且相等;

  ⑵对应线段平行且相等,对应角相等。

  ⑶平移不改变图形的大小和形状(只改变图形的位置)。

  (4)平移后的图形与原图形全等。

  3.简单的平移作图

  ①确定个图形平移后的位置的条件:

  ⑴需要原图形的位置;

  ⑵需要平移的方向;

  ⑶需要平移的距离或一个对应点的位置。

  ②作平移后的图形的方法:

  ⑴找出关键点;⑵作出这些点平移后的对应点;

  ⑶将所作的对应点按原来方式顺次连接,所得的;

  二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。

  1.旋转

  2.旋转的性质

  ⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。

  ⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。

  ⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

  ⑷旋转前后的两个图形全等。

  3.简单的旋转作图

  ⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。

  ⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。

  ⑶已知原图,旋转中心和旋转角,求作旋转后的图形。

  三、分析组合图案的形成

  ①确定组合图案中的“基本图案”

  ②发现该图案各组成部分之间的内在联系

  ③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合;

  ⑸旋转变换与轴对称变换的组合;⑹轴对称变换与平移变换的组合。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- xiaozhentang.com 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务