若函数f(x)在点的某一临域内具有直到(n+1)阶导数,则在该邻域内f(x)的n阶泰勒公式为:
其中:
,称为拉格朗日余项。
以上函数展开式称为泰勒级数。
泰勒级数在幂级数展开中的作用:
在泰勒公式中,取,得:
这个级数称为麦克劳林级数。函数f(x)的麦克劳林级数是x的幂级数,那么这种展开是唯一的,且必然与f(x)的麦克劳林级数一致。
注意:如果f(x)的麦克劳林级数在点的某一临域内收敛,它不一定收敛于f(x)。
因此,如果f(x)在处有各阶导数,则f(x)的麦克劳林级数虽然能做出来,但这
个级数能否在某个区域内收敛,以及是否收敛于f(x)都需要进一步验证。
几个重要的泰勒级数。参数x 为复数时它们依然成立。
指数函数和自然对数:
几何级数:
二项式定理:
三角函数:
双曲函数:
朗伯W函数:
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- xiaozhentang.com 版权所有 湘ICP备2023022495号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务