绪论 ................................................................................2
1.1 液压传动与控制概述 ...........................................................3
1.2 液压机的发展及工艺特点 .......................................................4 2.1 工况分析 .....................................................................6 2.2负载图和速度图的绘制: .......................................................7 3.1 自动补油的保压回路设计 ......................................................8 3.2 释压回路设计 ..............................................................8 3.3液压机液压系统原理图拟定 ....................................................9 4.1 确定液压缸主要参数 ........................................ 错误!未定义书签。 4.2液压元件的选择 .............................................................11 5.1 液压缸主要尺寸的确定 ........................................................17 5.2 液压缸的结构设计 ............................................................17 7.1 液压站的结构型式 ...........................................................22 7.2 液压泵的安装方式 ...........................................................22 7.3液压油箱的设计 ..............................................................22 7.4液压站的结构设计 ............................................................25
1
2
本设计包括论文说明书字数在15000字左右,图纸量3张A0大小左右,还有部分其他资料.
本毕业设计论文资料均为近几年一本二本院校答辩通过的设计资料,图纸清晰准确,有极高的参考价值. 一 绪论
1.1 液压传动与控制概述
液压传动与控制是以液体(油、高水基液压油、合成液体)作为介质来实现各种机械量的输出(力、位移或速度等)的。它与单纯的机械传动、电气传动和气压传动相比,具有传递功率大,结构小、响应快等特点,因而被广泛的应用于各种机械设备及精密的自动控制系统。液压传动技术是一门新的学科技术,它的发展历史虽然较短,但是发展的速度却非常之快。自从1795年制成了第一台压力机起,液压技术进入了工程领域;1906年开始应用于国防战备武器。
第二次世界大战期间,由于军事工业迫切需要反应快、精度高的自动控制系统,因
3
而出现了液压伺服控制系统。从60年代起,由于原子能、空间技术、大型船舰及电子技术的发展,不断地对液压技术提出新的要求,从民用到国防,由一般的传动到精确度很高的控制系统,这种技术得到更加广泛的发展和应用。
在国防工业中:海、陆、空各种战备武器均采用液压传动与控制。如飞机、坦克、舰艇、雷达、火炮、导弹及火箭等。
在民用工业中:有机床工业、冶金工业、工程机械、农业方面,汽车工业、轻纺工业、船舶工业。
另外,近几年又出现了太阳跟踪系统、海浪模拟装置、飞机驾驶模拟、船舶驾驶模拟器、地震再现、火箭助飞发射装置、宇航环境模拟、高层建筑防震系统及紧急刹车装置等,均采用了液压技术。
总之,一切工程领域,凡是有机械设备的场合,均可采用液压技术。它的发展如此之快,应用如此之广,其原因就是液压技术有着优异的特点,归纳起来液压动力传动方式具有显著的优点:其单位重量的输出功率和单位尺寸输出功率大;液压传动装置体积小、结构紧凑、布局灵活,易实现无级调速,调速范围宽,便于与电气控制相配合实现自动化;易实现过载保护与保压,安全可靠;元件易于实现系列化、标准化、通用化;液压易与微机控制等新技术相结合,构成“机-电-液-光”一体化便于实现数字化。
1.2 液压机的发展及工艺特点
液压机是制品成型生产中应用最广的设备之一,自19世纪问世以来发展很快,液压机在工作中的广泛适应性,使其在国民经济各部门获得了广泛的应用。由于液压机的液压系统和整机结构方面,已经比较成熟,目前国内外液压机的发展不仅体现在控制系统方面,也主要表现在高速化、高效化、低能耗;机电液一体化,以充分合理利用机械和电子的先进技术促进整个液压系统的完善;自动化、智能化,实现对系统的自动诊断和调整,具有故障预处理功能;液压元件集成化、标准化,以有效防止泄露和污染等四个方面。
作为液压机两大组成部分的主机和液压系统,由于技术发展趋于成熟,国内外机型无较大差距,主要差别在于加工工艺和安装方面。良好的工艺使机器在过滤、冷却及防止冲击和振动方面,有较明显改善。在油路结构设计方面,国内外液压机都趋向于集成化、封闭式设计,插装阀、叠加阀和复合化元件及系统在液压系统中得到较广泛的应用。特别是集成块可以进行专业化的生产,其质量好、性能可靠而且设计的周期也比较短。 近年来在集成块基础上发展起来的新型液压元件组成的回路也有其独特的优点,它不需要另外的连接件其结构更为紧凑,体积也相对更小,重量也更轻无需管件连接,从而消除了因、接头引起的泄漏、振动和噪声。逻辑插装阀具有体积小、重量轻、密封性能好、功率损失小、动作速度快、易于集成的特点,从70年代初期开始出现,至今已得到了很快的发展。我国从1970年开始对这种阀进行研究和生产,并已将其广泛的应用于冶金、锻压等设备上,显示了很大的优越性。
液压机工艺用途广泛,适用于弯曲、翻边、拉伸、成型和冷挤压等冲压工艺,压力机是一种用静压来加工产品。适用于金属粉末制品的压制成型工艺和非金属材料,如塑
4
料、玻璃钢、绝缘材料和磨料制品的压制成型工艺,也可适用于校正和压装等工艺。 由于需要进行多种工艺,液压机具有如下的特点:
(1) 工作台较大,滑块行程较长,以满足多种工艺的要求; (2) 有顶出装置,以便于顶出工件;
(3) 液压机具有点动、手动和半自动等工作方式,操作方便;
(4) 液压机具有保压、延时和自动回程的功能,并能进行定压成型和定程成型的操作,
特别适合于金属粉末和非金属粉末的压制; (5) 液压机的工作压力、压制速度和行程范围可随意调节,灵活性大。
5
二 150t液压机液压系统工况分析
本机器(见图1.1)适用于可塑性材料的压制工艺。如冲压、弯曲、翻边、薄板拉伸等。也可以从事校正、压装、砂轮成型、冷挤金属零件成型、塑料制品及粉末制品的压制成型。本机器具有的动力机构和电气系统。采用按钮集中控制,可实现调整、手动及半自动三种操作方式。本机器的工作压力、压制速度、空载快速下行和减速的行程范围均可根据工艺需要进行调整,并能完成一般压制工艺。此工艺又分定压、定程两种工艺动作供选择。定压成型之工艺动作在压制后具有保压、延时、自动回程、延时自动退回等动作。 本机器主机呈长方形,外形新颖美观,动力系统采用液压系统,结构简单、紧凑、动作灵敏可靠。该机并设有脚踏开关,可实现半自动工艺动作的循环。
2.1 工况分析
本次设计在毕业实习调查的基础上,用类比的方法初步确定了立式安装的主液压缸活塞杆带动滑块及动横梁在立柱上滑动下行时,运动部件的质量为500Kg。
1.工作负载 工件的压制抗力即为工作负载:Ft1501039.81.47106N 2. 摩擦负载 静摩擦阻力: Ffs0.25009.8980N
动摩擦阻力: Ffd0.15009.8490N
6
3. 惯性负载 Fnm(vt)5000.30.2750N
Fb0.51060.02412000N 自重: Gmg4900N
4. 液压缸在各工作阶段的负载值:
其中:m0.9 m——液压缸的机械效率,一般取m=0.9-0.97。 工况 启动加速负载组成 FFbFfsG8080N FFbFfdFmG8340NFFbFfdG7590N推力 F/m 77.8N9266.7N8433.3N 快进 工进 快退 FFfdFtFbG1477590NFGFfdFb5390N11766.67N5988.9N
2.2负载图和速度图的绘制:
负载图按上面的数值绘制,速度图按给定条件绘制,如图:
7
三 液压机液压系统原理图设计
3.1 自动补油的保压回路设计
考虑到设计要求,保压时间要达到5s,压力稳定性好。若采用液压单向阀回路保压时间长,压力稳定性高,设计中利用换向阀中位机能保压,设计了自动补油回路,且保压时间由电气元件时间继电器控制,在0-20min内可调整。此回路完全适合于保压性能较高的高压系统,如液压机等。
自动补油的保压回路系统图的工作原理:
按下起动按纽,电磁铁1YA通电,换向阀6接入回路时,液压缸上腔成为压力腔,在压力到达预定上限值时压力继电器11发出信号,使换向阀切换成中位;这时液压泵卸荷,液压缸由换向阀M型中位机能保压。当液压缸上腔压力下降到预定下限值时,压力继电器又发出信号,使换向阀右位接人回路,这时液压泵给液压缸上腔补油,使其压力回升。回程时电磁阀2YA通电,换向阀左位接人回路,活塞快速向上退回。
3.2 释压回路设计
释压回路的功用在于使高压大容量液压缸中储存的能量缓缓的释放,以免她突然释放时产生很大的液压冲击。一般液压缸直径大于25mm、压力高于7Mpa时,其油腔在排油前就先须释压。
根据设计很实际的生产需要,选择用节流阀的释压回路。其工作原理:按下起动按钮,换向阀6的右位接通,液压泵输出的油经过换向阀6的右位流到液压缸的上腔。同时液压油的压力影响压力继电器。当压力达到一定压力时,压力继电器发出信号,使换
8
向阀5回到中位,电磁换向阀10接通。液压缸上腔的高压油在换向阀5处于中位(液压泵卸荷)时通过节流阀9、换向阀10回到油箱,释压快慢由节流阀调节。当此腔压力降至压力继电器的调定压力时,换向阀6切换至左位,液控单向阀7打开,使液压缸上腔的油通过该阀排到液压缸顶部的副油箱13中去。使用这种释压回路无法在释压前保压,释压前有保压要求时的换向阀也可用M型,并且配有其它的元件。
机器在工作的时候,如果出现机器被以外的杂物或工件卡死,这是泵工作的时候,输出的压力油随着工作的时间而增大,而无法使液压油到达液压缸中,为了保护液压泵及液压元件的安全,在泵出油处加一个直动式溢流阀1,起安全阀的作用,当泵的压力达到溢流阀的导通压力时,溢流阀打开,液压油流回油箱。起到保护作用。在液压系统中,一般都用溢流阀接在液压泵附近,同时也可以增加液压系统的稳定性。使零件的加工精度增高。
3.3液压机液压系统原理图拟定
上液压缸工作循环
(1) 快速下行。按下起动按钮,电磁铁1YA通电,这时的油路为: 液压缸上腔的供油的油路
变量泵1—换向阀6右位—节流阀8—压力继电器11—液压缸15
9
液压缸下腔的回油路
液压缸下腔15—液控单向阀7—换向阀6右位—电磁阀5—背压阀4—油箱 油路分析:变量泵1的液压油经过换向阀6的右位,液压油分两条油路:一条油路通过节流阀7流经继电器11,另一条路直接流向液压缸的上腔和压力表。使液压缸的上腔加压。液压缸15下腔通过液控单向阀7经过换向阀6的右位流经背压阀,再流到油箱。因为这是背压阀产生的背压使接副油箱旁边的液控单向阀7打开,使副油箱13的液压油经过副油箱旁边的液控单向阀14给液压缸15上腔补油。使液压缸快速下行,另外背压阀接在系统回油路上,造成一定的回油阻力,以改善执行元件的运动平稳性。
(2) 保压时的油路情况:
油路分析:当上腔快速下降到一定的时候,压力继电器11发出信号,使换向阀6的电磁铁1YA断电,换向阀回到中位,利用变量泵的柱塞孔从吸油状态过渡到排油状态,其容积的变化是由大变小,而在由增大到缩小的变化过程中,必有容积变化率为零的一瞬间,这就是柱塞孔运动到自身的中心线与死点所在的面重合的这一瞬间,这时柱塞孔的进出油口在配油盘上所在的位置,称为死点位置。柱塞在这个位置时,既不吸油,也不排油,而是由吸转为排的过渡状态。液压系统保压。而液压泵1在中位时,直接通过背压阀直接回到油箱。
(3) 回程时的油路情况: 液压缸下腔的供油的油路:
变量泵1——换向阀6左位——液控单向阀7——液压油箱15的下腔 液压缸上腔的回油油路:
液压腔的上腔——液控单向阀14——副油箱13
液压腔的上腔—节流阀8——换向阀6左位——电磁阀5——背压阀4——油箱
油路分析: 当保压到一定时候,时间继电器发出信号,使换向阀6的电磁铁2YA通电,换
1) 液压缸实际所需流量计算 ① 工作快速空程时所需流量
Q1A1V1cv
cv液压缸的容积效率,取cv0.96
0.08030.310600.961033Q11506(Lmin)
② 工作缸压制时所需流量
Q2A1V20.08030.0110600.961033cv50.1875(Lmin)
③ 工作缸回程时所需流量
10
Q2A2V3cv0.018840.0610600.96103370.65(Lmin)4.2液压元件的选择
4.2.1确定液压泵规格和驱动电机功率
由前面工况分析,由最大压制力和液压主机类型,初定上液压泵的工作压力取为
25MPa,考虑到进出油路上阀和管道的压力损失为1MPa(含回油路上的压力损失折算
PpP1P1(251)1026MPa
6到进油腔),则液压泵的最高工作压力为
上述计算所得的Pp是系统的静态压力,考虑到系统在各种工况的过渡阶段出现的动态压力往往超过静态压力,另外考虑到一定压力贮备量,并确保泵的寿命,其正常工作压力为泵的额定压力的80%左右因此选泵的额定压力Pn应满足:
PnPp/0.826/0.831.25Mpa
液压泵的最大流量应为:
qpKL(q)max
式中qp液压泵的最大流量
(q)max同时动作的各执行所需流量之和的最大值,如果这时的溢流阀正进行工
作,尚须加溢流阀的最小溢流量2~3Lmin。
KL系统泄漏系数,一般取KL1.1~1.3,现取KL1.1。
qpKL(q)maxq1.1(70.652.5)80.465Lmin
1.选择液压泵的规格
由于液压系统的工作压力高,负载压力大,功率大。大流量。所以选轴向柱塞变量泵。柱塞变量泵适用于负载大、功率大的机械设备(如龙门刨床、拉床、液压机),柱塞式变量泵有以下的特点:
1) 工作压力高。因为柱塞与缸孔加工容易,尺寸精度及表面质量可以达到很高的要求,油液泄漏小,容积效率高,能达到的工作压力,一般是(200~400)105Pa,最高可以达到1000105Pa。
2) 流量范围较大。因为只要适当加大柱塞直径或增加柱塞数目,流量变增大。 3) 改变柱塞的行程就能改变流量,容易制成各种变量型。
4) 柱塞油泵主要零件均受压,使材料强度得到充分利用,寿命长,单位功率重量小。但柱塞式变量泵的结构复杂。材料及加工精度要求高,加工量大,价格昂贵。
根据以上算得的qp和Pp在查阅相关手册《机械设计手册》成大先P20-195得:现选用63YCY141B,排量63ml/r,额定压力32Mpa,额定转速1500r/min,驱动功率59.2KN,容积效率92%,重量71kg,容积效率达92%。
2.与液压泵匹配的电动机的选定
由前面得知,本液压系统最大功率出现在工作缸压制阶段,这时液压泵的供油
11
p液压泵的总效率。压力值为26Mpa,流量为已选定泵的流量值。柱塞泵为0.80~0.85,
取p0.82。
选
Np用1000r/min
(10p)3的电动机,则驱
动电机功率为
Ppqp(18.350)(600.82)18.37KW选择电动机 Y180M4,其额定功率为18.5KW。
4.2.2阀类元件及辅助元件的选择 1. 对液压阀的基本要求:
(1). 动作灵敏,使用可靠,工作时冲击和振动小。油液流过时压力损失小。 (2). 密封性能好。结构紧凑,安装、调整、使用、维护方便,通用性大 2. 根据液压系统的工作压力和通过各个阀类元件及辅助元件型号和规格
主要依据是根据该阀在系统工作的最大工作压力和通过该阀的实际流量,其他还需考虑阀的动作方式,安装固定方式,压力损失数值,工作性能参数和工作寿命等条件来选择标准阀类的规格:
估计通过流序号 1 元件名称 斜盘式柱塞泵 WU网式滤油器 直动式溢流阀 背压阀 二位二通手动电磁阀 三位四通电磁阀 液控单向阀 节流阀 节流阀 二位二通电量(Lmin) 型号 63SCY14-1B 规格 32Mpa,驱动功率59.2KN 156.8 2 3 4 5 6 7 8 9 10 160 120 80 80 100 80 80 80 30 WU-160*180 DBT1/315G24 YF3-10B 22EF3-E10B 34DO-B10H-T YAF3-E610B QFF3-E10B QFF3-E10B 22EF3B-E10B 40通径,压力损失0.01MPa 10通径,32Mpa,板式联接 10通径,21Mpa,板式联接 10通径,压力31.5MPa 32通径,32MPa 10通径,16MPa 10通径,16MPa 6通径,压力20 MPa 12
磁阀 11 12 13 14 15 16 17 18 19 20 压力继电器 压力表开关 油箱 液控单向阀 上液压缸 下液压缸 单向节流阀 单向单向阀 三位四通电磁换向阀 减压阀 48 48 ALF3-E10B ALF3-E10B 10通径,16MPa 10通径,16MPa YAF3-E610B 32通径,32MPa - - DP1-63B KFL8-30E 8通径,10.5-35 MPa 32Mpa,6测点 25 40 34DO-B10H-T JF3-10B
4.2.3 管道尺寸的确定
系统中使用的种类很多,有钢管、铜管、尼龙管、塑料管、橡胶管等,必须按照安装位置、工作环境和工作压力来正确选用。本设计中采用钢管,因为本设计中所须的压力是高压,P=31.25MPa(P6.3MPa) , 钢管能承受高压,价格低廉,耐油,抗腐蚀,刚性好,但装配是不能任意弯曲,常在装拆方便处用作压力管道一中、高压用无缝管,低压用焊接管。本设计在弯曲的地方可以用管接头来实现弯曲。
尼龙管用在低压系统;塑料管一般用在回用。 胶管用做联接两个相对运动部件之间的管道。胶管分高、低压两种。高压胶管是钢丝编织体为骨架或钢丝缠绕体为骨架的胶管,可用于压力较高的油路中。低压胶管是麻丝或棉丝编织体为骨架的胶管,多用于压力较低的油路中。由于胶管制造比较困难,成本很高,因此非必要时一般不用。
1. 管接头的选用:
管接头是与、与液压件之间的可拆式联接件,它必须具有装拆方便、连接牢固、密封可靠、外形尺寸小、通流能力大、压降小、工艺性好等各种条件。
管接头的种类很多,液压系统中与管接头的常见联接方式有:
焊接式管接头、卡套式管接头、扩口式管接头、扣压式管接头、固定铰接管接头。管路旋入端用的连接螺纹采用国际标准米制锥螺纹(ZM)和普通细牙螺纹(M)。锥螺纹依靠自身的锥体旋紧和采用聚四氟乙烯等进行密封,广泛用于中、低压液压系统;细牙螺纹密封性好,常用于高压系统,但要求采用组合垫圈或O形圈进行端面密封,有时也
13
采用紫铜垫圈。
液压系统中的泄漏问题大部分都出现在它管系中的接头上,为此对管材的选用,接头形式的确定(包括接头设计、垫圈、密封、箍套、防漏涂料的选用等),管系的设计(包括弯管设计、管道支承点和支承形式的选取等)以及管道的安装(包括正确的运输、储存、清洗、组装等)都要考虑清楚,以免影响整个液压系统的使用质量。
国外对管子的材质、接头形式和连接方法上的研究工作从不间断,最近出现一种用特殊的镍钛合金制造的管接头,它能使低温下受力后发生的变形在升温时消除——即把管接头放入液氮中用芯棒扩大其内径,然后取出来迅速套装在管端上,便可使它在常温下得到牢固、紧密的结合。这种“热缩”式的连接已经在航空和其它一些加工行业中得到了应用,它能保证在40~55Mpa的工作压力下不出现泄漏。本设计根据需要,选择卡套式管接头。要求采用冷拔无缝钢管。
2. 管道内径计算:
d4Qvm (1)
3式中 Q——通过管道内的流量 ms
v——管内允许流速 ms,见表:
允许流速推荐值 油液流经的管道 液压泵吸 液压系统压道 液压系统回道
(1). 液压泵压道的内径: 取v=4m/s
d4Q推荐流速 m/s 0.51.5 3~6,压力高,管道短粘度小取大值 1.5~2.6 vm
d4Qvm450103603.14416.3mm
根据《机械设计手册》成大先P20-1查得:取d=20mm,钢管的外径 D=28mm; 管接头联接螺纹M27×2。
(2). 液压泵回道的内径:
取v=2.4m/s
14
d4Qvm
d4Qvm470.65103603.142.425mm
根据《机械设计手册》成大先P20-1查得:取d=25mm,钢管的外径 D=34mm; 管接头联接螺纹M33×2。 3. 管道壁厚的计算
pd2[]m
式
pd2[]m31.251025102150MPa632.6mm 所以所选管道适用。
4. 液压系统的验算
上面已经计算出该液压系统中进,回的内径分别为32mm,42mm。
但是由于系统的具体管路布置和长度尚未确定,所以压力损失无法验算。
4.2.4系统温升的验算
在整个工作循环中,工进阶段所占的时间最长,且发热量最大。为了简化计算,主要考虑工进时的发热量。一般情况下,工进时做功的功率损失大引起发热量较大,所以只考虑工进时的发热量,然后取其值进行分析。
当V=10mm/s时,即v=600mm/min
q即
此时泵的效率为0.9,泵的出口压力为26MP,则有
P入Dv0.320.6m/min48104q48L4/min223m/min
2648600.9KW23KW60060
103P输出Fv1470000103KW
即
P输出14.7KW
此时的功率损失为:
PP入P出2314.7KW8.3KW
3假定系统的散热状况一般,取油箱的散热面积A为
K2010KW/cm2C,
15
A0.065V320.0651650m9.08m3222
系统的温升为
tPKA8.3201039.08C35.7C
根据《机械设计手册》成大先P20-767:油箱中温度一般推荐30-50C 所以验算表明系统的温升在许可范围内。
16
五 液压缸的结构设计
5.1 液压缸主要尺寸的确定
1) 液压缸壁厚和外经的计算
液压缸的壁厚由液压缸的强度条件来计算。
液压缸的壁厚一般指缸筒结构中最薄处的厚度。从材料力学可知,承受内压力的圆筒,其内应力分布规律应壁厚的不同而各异。一般计算时可分为薄壁圆筒和厚壁圆筒。 液压缸的内径D与其壁厚的比值D/10的圆筒称为薄壁圆筒。工程机械的液压缸,一般用无缝钢管材料,大多属于薄壁圆筒结构,其壁厚按薄壁圆筒公式计算
pyD为保证最小导向长度H,若过分增大l1和B都是不适宜的,必要时可在缸盖与活塞之间增加一隔套K来增加H的值。隔套的长度C由需要的最小导向长度H决定,即
CH122
l1B
滑台液压缸: 最小导向长度:H取 H=200mm
活塞宽度:B=0.6D=192mm 缸盖滑动支承面长度:
l10.6d168mm500203202185mm
12隔套长度:C24019216860mm 所以无隔套。
液压缸缸体内度应等于活塞的行程与活塞的宽度之和。缸体外形长度还要考虑到两端端盖的厚度。一般液压缸缸体长度不应大于内径的20~30倍。
液压缸:
缸体内度LBl192500mm692mm
当液压缸支承长度LB(10-15)d时,需考虑活塞杆弯度稳定性并进行计算。本设计不需进行稳定性验算。
5.2 液压缸的结构设计
液压缸主要尺寸确定以后,就进行各部分的结构设计。主要包括:缸体与缸盖的连接结构、活塞与活塞杆的连接结构、活塞杆导向部分结构、密封装置、排气装置及液压缸的安装连接结构等。由于工作条件不同,结构形式也各不相同。设计时根据具体情况进行选择。
设 计 计 算 过 程
1) 缸体与缸盖的连接形式
缸体与缸盖的连接形式与工作压力、缸体材料以及工作条件有关。
17
本次设计中采用外半环连接,如下图1所示:
图1 缸体与缸盖外半环连接方式优点: (1)结构较简单 (2)加工装配方便 缺点:
(1)外型尺寸大
(2)缸筒开槽,削弱了强度,需增加缸筒壁厚2)活塞杆与活塞的连接结构
参阅<<液压系统设计简明手册>>P15表2-8,采用组合式结构中的螺纹连接。如下图2所示:
图2 活塞杆与活塞螺纹连接方式 特点:
结构简单,在振动的工作条件下容易松动,
必须用锁紧装置。应用较多,如组合机床与工程机械上的液压缸。 2) 活塞杆导向部分的结构
(1)活塞杆导向部分的结构,包括活塞杆与端盖、导向套的结构,以及密封、防尘和锁紧装置等。导向套的结构可以做成端盖整体式直接导向,也可做成与端盖分开的导向套结构。后者导向套磨损后便于更换,所以应用较普遍。导向套的位置可安装在密封圈的内侧,也可以装在外侧。机床和工程机械中一般采用装在内侧的结构,有利于导向套的润滑;而油压机常采用装在外侧的结构,在高压下工作时,使密封圈有足够的油压将唇边张开,以提高密封性能。
18
参阅<<液压系统设计简明手册>>P16表2-9,在本次设计中,采用导向套导向的结构形式,其特点为:
导向套与活塞杆接触支承导向,磨损后便于更换,导向套也可用耐磨材料。 盖与杆的密封常采用Y形、V形密封装置。密封可靠适用于中高压液压缸。 防尘方式常用J形或三角形防尘装置活塞及活塞杆处密封圈的选用
活塞及活塞杆处的密封圈的选用,应根据密封的部位、使用的压力、温度、运动速度的范围不同而选择不同类型的密封圈。
参阅<<液压系统设计简明手册>>P17表2-10,在本次设计中采用O形密封圈。
19
六 液压集成油路的设计
通常使用的液压元件有板式和管式两种结构。管式元件通过来实现相互之间的连接,液压元件的数量越多,连接的管件越多,结构越复杂,系统压力损失越大,占用空间也越大,维修、保养和拆装越困难。因此,管式元件一般用于结构简单的系统。
板式元件固定在板件上,分为液压油路板连接、集成块连接和叠加阀连接。把一个液压回路中各元件合理地布置在一块液压油路板上,这与管式连接比较,除了进出液压油液通过管道外,各液压元件用螺钉规则地固定在一块液压阀板上,元件之间由液压油路板上的孔道勾通。板式元件的液压系统安装 、调试和维修方便,压力损失小,外形美观。但是,其结构标准化程度差,
互换性不好,结构不够紧凑,制造加工困难,使用受到。此外,还可以把液压元件分别固定在几块集成块上,再把各集成块按设计规律装配成一个液压集成回路,这种方式与油路板比较,标准化、系列化程度高,互换性能好,维修、拆装方便,元件更换容易;集成块可进行专业化生产,其质量好、性能可靠而且设计生产周期短。使用近年来在液压油路板和集成块基础上发展起来的新型液压元件叠加阀组成回路也有其独特的优点,它不需要另外的连接件,由叠加阀直接叠加而成。其结构更为紧凑,体积更小,重量更轻,无管件连接,从而消除了因、接头引起的泄漏、振动和噪声。
本次设计采用系统由集成块组成,由于本液压系统的压力比较大,所以调压阀选择DB/DBW型直动溢流阀,而换向阀等以及其他的阀采用广州机床研究所的GE系列阀。
液压集成块结构与设计
6.1液压集成回路设计
1)把液压回路划分为若干单元回路,每个单元回路一般由三个液压元件组成,采用通用的压力油路P和回油路T,这样的单元回路称液压单元集成回路。设计液压单元集成回路时,优先选用通用液压单元集成回路,以减少集成块设计工作量,提高通用性。 2)把各个液压单元集成回路连接起来,组成液压集成回路,一个完整的液压集成回路由底板、供油回路、压力控制回路、方向回路、调速回路、顶盖及测压回路等单元液压集成回路组成。液压集成回路设计完成后,要和液压回路进行比较,分析工作原理是否相同,否则说明液压集成回路出了差错。
20
底板及供油块设计
上图为底板块及供油块,其作用是连接集成块组。液压泵供应的压力油P由底板引入各集成块,液压系统回油路T及泄漏油路L经底板引入液压油箱冷却沉淀。
21
七 液压站结构设计
液压站是由液压油箱,液压泵装置及液压控制装置三大部分组成。液压油箱装有空气滤清器,滤油器,液面指示器和清洗孔等。液压站装置包括不同类型的液压泵,驱动电机及其它们之间的联轴器等,液压控制装置是指组成液压系统的各阀类元件及其联接体。
7.1 液压站的结构型式
机床液压站的结构型式有分散式和集中式两种类型。
(1)集中式 这种型式将机床液压系统的供油装置、控制调节装置于机床之外,单独设置一个液压站。这种结构的优点是安装维修方便,液压装置的振动、发热都与机床隔开;缺点是液压站增加了占地面积。
(2)分散式 这种型式将机床液压系统的供油装置、控制调节装置分散在机床的各处。例如,利用机床或底座作为液压油箱存放液压油。把控制调节装置放在便于操作的地方。这种结构的优点是结构紧凑,泄漏油回收,节省占地面积,但安装维修方便。同时供油装置的振动、液压油的发热都将对机床的工作精度产生不良影响,故较少采用,一般非标设备不推荐使用。本次设计采用集中式。
7.2 液压泵的安装方式
液压站装置包括不同类型的液压泵、驱动电动机及其联轴器等。其安装方式为立式和卧式两种。
1. 立式安装 将液压泵和与之相联接的放在液压油箱内,这种结构型式紧凑、美观,同时电动机与液压泵的同轴度能保证,吸油条件好,漏油可直接回液压油箱,并节省占地面积。但安装维修不方便,散热条件不好。
2. 卧式安装 液压泵及管道都安装在液压油箱外面,安装维修方便,散热条件好,但有时电动机与液压泵的同轴度不易保证。
考虑到维修,散热等方面的要求。本设计中采用卧式联接。
7.3液压油箱的设计
液压油箱的作用是贮存液压油、充分供给液压系统一定温度范围的清洁油液,并对回油进行冷却,分离出所含的杂质和气泡。 7.3.1 液压油箱有效容积的确定
液压油箱在不同的工作条件下,影响散热的条件很多,通常按压力范围来考虑。液压油箱的有效容量V可概略地确定为:
VQv m3
中高压或大功率系统(p6.3MPa) 6~12 系统类型 低压系统(p2.5MPa) 2~4 中压系统(p6.3MPa) 5~7
根据实际设计需要,选择的p26MPa,所以此系统属于中高压系统(p6.3MPa),
所以取: V(6~12)Qv
22
式中 V-液压油箱有效容量;
Qv-液压泵额定流量。
参照《机械设计手册》成大先P20-767锻压机械的油箱容积通常取为每分钟流量的6-12倍。
即: V6156.8~12156.8940.8L~1881.6Lminmin取 V11320L应当注意:设备停止运转后,设备中的那部分油液会因重力作用而流回液压油箱。为了防止液压油从油箱中溢出,油箱中的液压油位不能太高,一般不应超过液压油箱高度的80%。
所以,实际油箱的体积为:
V V113201650L0.80.8min7.3.2 液压油箱的外形尺寸设计
液压油箱的有效面积确定后,需设计液压油箱的外形尺寸,一般设计尺寸比(长:宽:高)为1:1:1~1:2:3。但有时为了提高冷却效率,在安装位置不受时,可将液压油箱的容量予以增大,本设计中的油箱根据液压泵与电动机的联接方式的需要以及安装其它液压元件需要,选择长为1.5m,宽为1.1m,高为1.0m。 7.3.3 液压油箱的结构设计
一般的开式油箱是用钢板焊接而成的,大型的油箱则是用型钢作为骨架的,再在外表焊接钢板。油箱的形状一般是正方形或长方形,为了便于清洗油箱内壁及箱内滤油器,油箱盖板一般都是可拆装的。设计油箱时应考虑的几点要求:
1. 壁板:壁板厚度一般是3~4mm;容量大的油箱一般取4~6mm。本设计中取油箱的壁厚为6mm。对于大容量的油箱,为了清洗方便,也可以在油箱侧壁开较大的窗口,并用侧盖板紧密封闭。
2. 底板与底脚:底板应比侧板稍厚一些,底板应有适当倾斜以便排净存油和清洗,液压油箱底部应做成倾斜式箱底,并将放油塞安放在最低处。油箱的底部应装设底脚,底脚高度一般为150~200mm,以利于通风散热及排出箱内油液。一般采用型钢来加工底脚。本设计中用的是槽钢加工的。
23
min
液压油底部的构造的几种情况
这是一般液压油箱底面的构造的五种情况,我们根据具体设计和生产的需要来确定液压油箱底面的构造,根据本设计的需要,选了(c)型构造。
3. 顶板:顶板一般取得厚一些,为6~10mm,因为本设计把泵、阀和电动机安装在油箱顶部上时,顶板厚度选最大值10mm。顶板上的元件和部件的安装面应该经过机械加工,以保证安装精度,同时为了减少机加工工作量,安装面应该用形状和尺寸适当的厚钢板焊接。
4. 隔板:油箱内一般设有隔板,隔板的作用是使回油区与泵的吸油区隔开,增大油液循环的路径,降低油液的循环速度,有利于降温散热、气泡析出和杂质沉淀。隔板的安装型式有多种,隔板一般沿油箱的纵向布置,其高度一般为最低液面高度的2/3~3/4。有时隔板可以设计成高出液压油面,使液压油从隔板侧面流过;在中部开有较大的窗口并配上适当面积的滤网,对油液进行粗滤。
5. 侧板:侧板厚度一般为3-4mm,侧板四周顶部应该加工成高出油箱顶板3~4mm,为了使液压元件的在工作等的情况下泄漏出来的油不至于洒落在地面上或操作者的身上,同时可以防止液压油箱的顶板在潮湿的气候中腐蚀。
回及吸为了防止出现吸空和回油冲击油面形成泡沫,油泵的吸和回应布置在油箱最低液面50~100mm以下,管口与箱底距离不应小于2倍的管径,防止
24
吸入沉淀物。管口应切成45,切口面向箱壁,与箱壁之距离为3倍管径。回的出口绝对不允许放在液面以上。本设计的管口与箱底的距离为160mm,切口与箱壁的距离为250mm。
6. 回油集管的考虑:单独设置回当然是理想的,但不得已时则应使用回油集管。对溢流阀、顺序阀等,应注意合理设计回油集管,不要人为地施以背压。 7. 吸: 吸前一般应该设置滤油器,其精度为100~200目的网式或线式隙式滤油器。滤油器要有足够大的容量,避免阻力太大。滤油器与箱底间的距离应不小于20mm。吸应插入液压油面以下,防止吸油时卷吸空气或因流入液压油箱的液压油搅动油面,致使油中混入气泡。
8. 泄油的配置: 管子直径和长度要适当,管口应该在液面之上,以避免产生背压。泄漏以单独配管为最好,尽量避免与回集流配管的方法。
9. 过滤网的配置:过滤网可以设计成液压油箱内部一分为二,使吸与回隔开,这样液压油可以经过一次过滤。过滤网通常使用50~100目左右的金属网。 10. 滤油器: 滤油器的作用及过滤精度 液压系统中的液压油经常混有杂质,如空气中的尘埃、氧化皮、铁屑、金属粉末。密封材料碎片、油漆皮和 纱纤维。这些杂质是造成液压元件故障的额重要原因,它们会造成油泵、油马达及阀类元件内运动件和密封件的磨损和划伤,阀芯卡死,小孔堵塞等故障,影响液压系统的可靠性和使用寿命。近年来对液压油的污染控制已经开始引起人们的极大重视。
为了便于随时检查和观察箱内液体液位的情况,应该在油箱壁板的侧面安装液面指示器,指示最高、最低油位。液面指示器一般选用带有温度计的液面指示器。
油箱顶板需要装设空气滤清器,对进入油箱的空气进行过滤,防止大气中的杂质污染液压油。空气滤清器的过滤能力一般为油泵流量的两倍,其过滤精度应与液压系统中最细的滤油器的精度相同。
油箱内部应刷浅色的耐油油漆。以防止锈蚀。
7.4液压站的结构设计
7.4.1 电动机与液压泵的联接方式
电动机与液压泵的联接方式分为法兰式、支架式和支架法兰式。
1. 法兰式 液压泵安装在法兰上,法兰再与带法兰盘的电动机联接,电动机与液压泵依靠法兰盘上的止口来保证同轴度。这种结构装拆很方便。
2. 支架式 液压泵直接装在支架的止口里,然后依靠支架的底面与底板相连,再与带底座的电动机相联。这种结构对于保证同轴度比较困难(电动机与液压泵的同轴度0.05mm)。为了防止安装误差产生的振动,常用带有弹性的联轴器。 3. 法兰支架式 电动机与液压泵先以法兰联接,法兰再与支架联接,最后支架再装在底板上。它的优点是大底板不用加工,安装方便,电动机与液压泵的同轴度靠法兰盘上的止口来保证。
本设计采用法兰支架式联接。同时考虑本设计中的电动机与液压泵的联接在安装时产生同轴度误差带来的不良影响,常用带有弹性的联轴器。为了增加电动机与液压泵的联接刚性,避免产生共振,本设计把液压泵和电动机先装在刚性较好的底板上使其成为
25
一体,然后底板加垫再装到液压油箱盖上。
7.4.2 液压泵结构设计的注意事项:
1. 液压装置中各部件、元件的布置要均匀、便于装配、调整、维修和使用,并且要适当地注意外观的整齐和美观。
2. 考虑液压油箱的大小与刚度,液压泵与电动机装在液压油箱的盖子上或装在液压油箱之外。
3. 在阀类元件的布置中,行程阀的安放位置必须靠近运动部件。手动换向阀的位置必须靠近操作部位。换向阀之间应留有一定的轴向距离,以便进行手动调整或装拆电磁铁。压力表及其开关应布置在便于观察和调整的地方。
4. 压泵与机床相联的管道一般都先集中接到机床的中间接头上,然后再分别通向不同部件
的各个执行机构中去,这样做有利于搬运、装拆和维修。
5. 硬管应贴地或沿着机床外形壁面敷设。相互平行的管道应保持一定的间隔,并用管夹固定。随工作部件运动的管道可采用软管、伸缩管或弹性管。软管安装时应避免发生扭转,影响使用寿命。
7.4.3 电动机的选择:
电动机的选择范围包括:电动机的种类、类型,容量、额定电压、额定转速及其各项经济指标等。而且对这些参数要综合进行考虑。
选择电动机的容量是电力传动系统能否经济和可靠运行的重要问题。如果电动机容量大小,长期处于过载运行。造成电动机绝缘过早地损坏;如果容量过大,不仅造成设备上的浪费,而且运行效率低,对电能的利用不经济。因此,选择电动机时,首先应是在各种工作方式下选择电动机的容量。
根据前面求出来的电动机的功率可以得出液压泵需要37.29KW以上功率的电动机。
根据一般设计的需要,一般采用Y系列小型笼型异步电动机,Y系列电动机是按国际电工委员会(IEC)标准全国统一设计的新系列产品,适用于传动无特殊性能要求的各种机械设备。
电动机采用B级绝缘。外壳防护等级为IP44。冷却方式为IC0141即全封闭自扇冷式。 电动机的基本安装、结构型式: B3型。 机座带底脚,端盖无凸缘; B5型。 机座不带底脚,端盖有绝缘。
B35型。机座带底脚,端盖有凸缘。
电动机额定电压为380V,额定频率为50Hz。
根据查表查出电动机型号为Y180M4,其额定功率为18.5KW。
26
参 考 文 献 1 雷天觉主编 《新编液压工程手册》 北京:北京理工大学出版社 1998
2 黄宏甲、黄谊、王积伟主编 《液压与气压传动》 北京:机械工业出版社 2001 3 刘连山主编 《流体传动与控制》 北京:人民交通出版社 1983
4 张利平、邓钟明主编 《液压气动系统设计手册》 北京:机械工业出版社1997 5 成大先主编 《机械设计手册》 第三版第三卷 化学工业出版社 2001 6 成大先主编 《机械设计手册》 第四版第四卷 化学工业出版社 2002 7 路甬祥主编 《液压气动设计手册》 北京:机械工业出版社 2003
27
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- xiaozhentang.com 版权所有 湘ICP备2023022495号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务