文章出处:dzsc.com 发布时间: | 32 次阅读 | 0次推荐 | 0条留言
图所示为简易电压保持器电路,在用于测量线路(或线路板)的工作电压时,可使电压值长期保持在电压表
上。这样既可避免测量时要照顾到表笔与测试点是否接触,又要读取电压表
上的读数的麻烦,而且还可以避免出现一些不应发生的差错(如表笔将测试两点短路等)。 图中,IC采用uA741等通用型集成运算放大器
,并接成1∶1的电压跟随器形式,输入阻抗很高,而增益为1,实际是起阻抗变换用。在IC同相输入端并接一个电容
C1,C1称之为测试保持电容。当测试表笔与测试点连接后,测试点电压对测试保持电容C1充电,约1s后,C1迅速被充到被测电压值。当表笔从测试点移开后。C1则通过集成运算放大器的输入阻抗放电。但因IC的输人阻抗很高,放电电流极小,放电过程进行得很慢。所以,在相当长的时间内C1基本上能够保持所测电压值,从而使IC输出端,即电压表上也能长时间保持这电压值,供挪开表笔后读数。下次测试前,只要先用表笔将C1短接一下,电压表上的读数就会立即消除。
K为电源开关
,IC的供电电压为±9V。
电路的电压测量范围为0.1~9V。若要扩大测量范围,可以在输入端加接电阻分压电路。测试保持电容C1应选用漏电小的钽电容
。此外,为了减小测试误差,IC应选用高输入阻抗的集成运算放火器。
增加采样保持器的记忆电压取值范围[2009-7-21]
采样保持器应用于模数转换器之前。基本的采样保持电路由两个放大运算器(A1和A2)、一个开关(S1)及一个电容器(C1)组成(图1)。对于许多小功率放大运算器来说,输入和输出电压的值在使用标准±15V电源时只能在±10V~±14V之间。如果能使这些设备采用更高的电压,可以显著地提高模数转换器
的分辨率。
可以通过使用可变电源提高放大器A1和A2可实现的记忆电压。但是,这个方法对S1有更高的电压要求。为了继续采用起初的开关范围,必须添加两个开关,并为开关S1,S2和S3添加独立的控制逻辑块CL1和CL2(图2)。该电路的两个部分可以使用独立的电源。就像在控制逻辑块CL1和CL2上那样,可以在放大器A1和A2上使用相同的可变电压。当S1和S3关闭时,S2是打开的。反之亦然。
由此产生的电路确保每个开关的MOS晶体管连接到栅极和基板的电压在要求的30V范围内(图3)。(可以从绝对电压值的总和推出这个值:|V1|+|V2|和|V3|=|V4|)。电压V1和-V2连接到放大器A1、控制逻辑块CL1以及开关S1和S2的晶体管的基板。电压V3和-V4连接到放大器A2,控制逻辑块CL2,以及开关S3的晶体管的基板。
采用电阻分压器R5、R6、R7和R8创建V1和V2的变化电压,这些电阻连接到30V和-30V的电源以及放大器跟随器A1的输出(图3)。晶体管Q1和Q2创建放大器A1电源的变化电压。电压V1和V2也为控制逻辑块和开关S1和S2的晶体管的基板供电。CL1包含晶体管Q11、Q12、Q15和Q16。它为开关S1的栅极Q5和Q6创建一个控制信号,为开关S2的栅极Q8和Q9创建一个返回信号。 电阻分压器R9、R10、R11和R12与30V和-30V的电源相连,放大器跟随器A2的输出创建了变化电压V3和V4。晶体管Q3和Q4创建了放大器A2的电源的变化电压。电压V3和V4也为控制逻辑块CL2和开关S3的晶体管的基板供电。CL2由晶体管Q13、Q14、Q17和Q18组成。它为开关S3的栅极Q7和Q10创建一个控制信号。CL1和CL2的晶体管Q5到Q10以及Q11到Q18分别是MOS逻辑晶体管的互补匹配对。
因篇幅问题不能全部显示,请点此查看更多更全内容