第1讲 函数、基本初等函数的图象与性质
考情解读 (1)高考对函数的三要素,函数的表示方法等内容的考查以基础知识为主,难度中等偏下.(2)函数图象和性质是历年高考的重要内容,也是热点内容,对图象的考查主要有两个方面:一识图,二用图,即利用函数的图象,通过数形结合的思想解决问题;对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合一起考查,既有具体函数也有抽象函数.常以填空题的形式出现,且常与新定义问题相结合,难度较大.
1.函数的三要素 定义域、值域及对应关系
两个函数当且仅当它们的三要素完全相同时才表示同一函数. 2.函数的性质
(1)单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则. (2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.
(3)周期性:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f(a+x)=f(x)(a不等于0),则其一个周期T=|a|. 3.函数的图象
对于函数的图象要会作图、识图、用图.
作函数图象有两种基本方法:一是描点法,二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.
4.指数函数、对数函数和幂函数的图象和性质
http://www.xiexingcun.com/ http://www.eywedu.net/
数学大师 www.eywedu.net【全站免费】
(1)指数函数y=ax(a>0,a≠1)与对数函数y=logax(a>0,a≠1)的图象和性质,分01两种情况,着重关注两函数图象中的两种情况的公共性质. (2)幂函数y=xα的图象和性质,分幂指数α>0,α<0两种情况. 热点一 函数的性质及应用 例1 (1)(2014·课标全国Ⅱ)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0.若f(x-1)>0,则x的取值范围是________. 1 0,时,f(x)=-x2,(2)设奇函数y=f(x) (x∈R),满足对任意t∈R都有f(t)=f(1-t),且x∈23 -=________. 则f(3)+f21 思维启迪 (1)利用数形结合,通过函数的性质解不等式;(2)利用f(x)的性质和x∈[0,]时的 23 解析式探求f(3)和f(-)的值. 21 答案 (1)(-1,3) (2)- 4解析 (1)∵f(x)是偶函数, ∴图象关于y轴对称. 又f(2)=0,且f(x)在[0,+∞)单调递减, 则f(x)的大致图象如图所示, 由f(x-1)>0,得-2 -=f=-.所以f(3)得函数y=f(x)的一个周期为2,故f(3)=f(1)=f(0+1)=-f(0)=0,f224311 -=0+-=-. +f244 思维升华 函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题. (1)(2013·重庆改编)已知函数f(x)=ax3+bsin x+4(a,b∈R),f(lg(log210))=5,则 f(lg(lg 2))=________. (2)已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为 http://www.xiexingcun.com/ http://www.eywedu.net/ 数学大师 www.eywedu.net【全站免费】 ________________________________________________________________________. 2-2, 答案 (1)3 (2)3 1 解析 (1)lg(log210)=lglg 2=-lg(lg 2), 由f(lg(log210))=5,得a[lg(lg 2)]3+bsin(lg(lg 2))=4-5=-1,则f(lg(lg 2))=a(lg(lg 2))3+bsin(lg(lg 2))+4=-1+4=3. (2)易知f(x)为增函数. 又f(x)为奇函数,由f(mx-2)+f(x)<0知, f(mx-2) 由m∈[-2,2]知g(m)<0恒成立, g-2=-x-2<0,2即∴-2 热点二 函数的图象 10ln|x+1| 例2 (1)下列四个图象可能是函数y=图象的是________. x+1 (2)已知函数f(x)的图象向左平移1个单位后关于y轴对称,当x2>x1>1时,[f(x2)-f(x1)](x2-x1)<01 恒成立,设a=f(-),b=f(2),c=f(3),则a,b,c的大小关系为________. 2 思维启迪 (1)可以利用函数的性质或特殊点,利用排除法确定图象.(2)考虑函数f(x)的单调性. 答案 (1)③ (2)b>a>c 10ln|x|解析 (1)函数的定义域为{x|x≠-1},其图象可由y=的图象沿x轴向左平移1个单位而 x10ln|x+1|10ln|x| 得到,y=为奇函数,图象关于原点对称,所以,y=的图象关于点(-1,0)成中 xx+1心对称.所以①④不可能是; http://www.xiexingcun.com/ http://www.eywedu.net/ 数学大师 www.eywedu.net【全站免费】 10ln|x+1| 又x>0时,y=>0,所以②不可能是,图象③可能是. x+1 (2)由于函数f(x)的图象向左平移1个单位后得到的图象关于y轴对称,故函数y=f(x)的图象本15 身关于直线x=1对称,所以a=f(-)=f(),当x2>x1>1时,[f(x2)-f(x1)](x2-x1)<0恒成立, 22等价于函数f(x)在(1,+∞)上单调递减,所以b>a>c. 思维升华 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换.尤其注意y=f(x)与y=f(-x)、y=-f(x)、y=-f(-x)、y=f(|x|)、y=|f(x)|及y=af(x)+b的相互关系. (2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系. (3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究. 2 -x+2x,x≤0, (1)(2013·课标全国Ⅰ改编)已知函数f(x)=若|f(x)|≥ax,则a lnx+1,x>0. 的取值范围是________. b (2)形如y=(a>0,b>0)的函数,因其图象类似于汉字中的“囧”字,故我们把它称为“囧 |x|-a函数”.若当a=1,b=1时的“囧函数”与函数y=lg |x|图象的交点个数为n,则n=________. 答案 (1)[-2,0] (2)4 解析 (1)函数y=|f(x)|的图象如图. ①当a=0时,|f(x)|≥ax显然成立. ②当a>0时,只需在x>0时,ln(x+1)≥ax成立. 比较对数函数与一次函数y=ax的增长速度. 显然不存在a>0使ln(x+1)≥ax在x>0上恒成立. ③当a<0时,只需在x<0时,x2-2x≥ax成立. 即a≥x-2成立,所以a≥-2.综上所述:-2≤a≤0. (2)由题意知,当a=1,b=1时, 1y= |x|-1 http://www.xiexingcun.com/ http://www.eywedu.net/ 数学大师 www.eywedu.net【全站免费】 =1 - x+1x<0且x≠-1, 1 x≥0且x≠1,x-1 在同一坐标系中画出“囧函数”与函数y=lg|x|的图象如图所示,易知它们有4个交点. 热点三 基本初等函数的图象及性质 logx,x>0,2 例3 (1)若函数f(x)=1若f(a)>f(-a),则实数a的取值范围是________. log-x,x<0,2ππ (2)已知α,β∈[-,]且αsin α-βsin β>0,则下面结论正确的是________. 22①α>β;②α+β>0;③α<β;④α2>β2. 思维启迪 (1)可利用函数图象或分类讨论确定a的范围;(2)构造函数f(x)=xsin x,利用f(x)的单调性. 答案 (1)(-1,0)∪(1,+∞) (2)④ 解析 (1)方法一 由题意作出y=f(x)的图象如图. 显然当a>1或-1f(-a). 方法二 对a分类讨论: 当a>0时,log2a>log1a,即log2a>0,∴a>1. 2 当a<0时,log1(-a)>log2(-a),即log2(-a)<0, 2 ∴-1ππ (2)设f(x)=xsin x,x∈[-,], 22∴y′=xcos x+sin x=cos x(x+tan x), π 当x∈[-,0]时,y′<0,∴f(x)为减函数, 2 http://www.xiexingcun.com/ http://www.eywedu.net/ 数学大师 www.eywedu.net【全站免费】 π 当x∈[0,]时,y′>0,∴f(x)为增函数, 2且函数f(x)为偶函数,又αsin α-βsin β>0, ∴αsin α>βsin β,∴|α|>|β|,∴α2>β2. 思维升华 (1)指数函数、对数函数、幂函数和三角函数是中学阶段所学的基本初等函数,是高考的必考内容之一,重点考查图象、性质及其应用,同时考查分类讨论、等价转化等数学思想方法及其运算.(2)比较数式大小问题,往往利用函数图象或者函数的单调性. 111 (1)设<()b<()a<1,那么aa,ba,ab的大小关系式是________. 555 fx,x≥0,1 (2)已知函数f(x)=2-x,函数g(x)=则函数g(x)的最小值是________. 2f-x,x<0, x 答案 (1)ab 解析 (1)因为指数函数y=()x在(-∞,+∞)上是递减函数,所以由<()b<()a<1, 5555a 得0b aa 所以y=ax,y=bx,y=()x在(-∞,+∞)上都是递减函数,从而ab bb故ab (2)当x≥0时,g(x)=f(x)=2x-x为单调增函数,所以g(x)≥g(0)=0;当x<0时,g(x)=f(-x) 21- =2x--x为单调减函数,所以g(x)>g(0)=0,所以函数g(x)的最小值是0. 2 1.判断函数单调性的常用方法 (1)能画出图象的一般用数形结合法去观察. (2)由基本初等函数通过加、减运算或复合而成的函数,常转化为基本初等函数单调性的判断问题. (3)对于解析式较复杂的一般用导数法. (4)对于抽象函数一般用定义法. 2.函数奇偶性的应用 函数的奇偶性反映了函数图象的对称性,是函数的整体特性. 利用函数的奇偶性可以把研究整个函数具有的性质问题转化到只研究部分(一半)区间上,是简化问题的一种途径.尤其注意偶函数f(x)的性质:f(|x|)=f(x). 3.函数图象的对称性 (1)若函数y=f(x)满足f(a+x)=f(a-x),即f(x)=f(2a-x),则f(x)的图象关于直线x=a对称.提 http://www.xiexingcun.com/ http://www.eywedu.net/ 数学大师 www.eywedu.net【全站免费】 醒:函数y=f(a+x)与y=f(a-x)的图象对称轴为x=0,并非直线x=a. a+b (2)若f(x)满足f(a+x)=f(b-x),则函数f(x)的图象关于直线x=对称. 2(3)若函数y=f(x)满足f(x)=2b-f(2a-x),则该函数图象关于点(a,b)成中心对称. 4.二次函数、一元二次方程和一元二次不等式是一个有机的整体,要深刻理解它们之间的相互关系,能用函数与方程、分类讨论、数形结合思想来研究与“三个二次”有关的问题,高考对“三个二次”知识的考查往往渗透在其他知识之中,并且大都出现在解答题中. 5.指数函数、对数函数的图象和性质受底数a的影响,解决与指、对数函数特别是与单调性有关的问题时,首先要看底数a的范围. 比较两个对数的大小或解对数不等式或解对数方程时,一般是构造同底的对数函数,若底数不同,可运用换底公式化为同底的对数,三数比较大小时,注意与0比较或与1比较. 6.解决与本讲有关的问题应注意函数与方程、数形结合、分类讨论、化归与转化等思想的运用. 真题感悟 1.(2014·安徽)若函数f(x)(x∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)= x1-x,0≤x≤1,2941则f4+f6=________. sin πx,1 5 16 解析 ∵f(x)是以4为周期的奇函数, 2933∴f4=f8-4=f-4, 4177f6=f8-6=f-6. ∵当0≤x≤1时,f(x)=x(1-x), 3333∴f4=4×1-4=16. 77π1∵当1 -=-f=. f6622941135∴f4+f6=2-16=16. http://www.xiexingcun.com/ http://www.eywedu.net/ 数学大师 www.eywedu.net【全站免费】 2.(2014·福建改编)若函数y=logax(a>0,且a≠1)的图象如图所示,则所给函数图象正确的是________. 答案 ② 1-解析 由题意得y=logax(a>0,且a≠1)的图象过(3,1)点,可解得a=3.图象①中,y=3x=()x, 3显然图象错误;图象②中,y=x3,由幂函数图象可知正确;图象③中,y=(-x)3=-x3,显然与所画图象不符;图象④中,y=log3(-x)的图象与y=log3x的图象关于y轴对称,显然不符,故图象②正确. 押题精练 1 x-,则函数y=f(x+1)的大致图象为________. 1.已知函数f(x)=e|ln x|-x 答案 ① e 解析 据已知关系式可得f(x)= e -ln x 1 x-=x0 作出其图象然后将其向左平移1个单位即得函数y=f(x+1)的图象. http://www.xiexingcun.com/ http://www.eywedu.net/ 数学大师 www.eywedu.net【全站免费】 2.已知函数f(x)=|log1x|,若m 答案 (4,+∞) 解析 ∵f(x)=|log1x|,若m ∴log1m=-log1n, 2 2 3 ∴mn=1,∴0 m当m=1时,m+3n=4,∴m+3n>4. 3.已知f(x)=2x-1,g(x)=1-x2,规定:当|f(x)|≥g(x)时,h(x)=|f(x)|;当|f(x)| |fx|,|fx|≥gx, 而h(x)=故h(x)的最小值为-1. -gx,|fx| ①f(2)=0;②x=-4为函数y=f(x)图象的一条对称轴;③函数y=f(x)在[8,10]上单调递增;④若方程f(x)=m在[-6,-2]上的两根为x1,x2,则x1+x2=-8. 则所有正确命题的序号为________. 答案 ①②④ 解析 令x=-2,得f(2)=f(-2)+f(2),又函数f(x)是偶函数,故f(2)=0,①正确; 根据①可得f(x+4)=f(x),可得函数f(x)的周期是4, 由于偶函数的图象关于y轴对称,故x=-4也是函数y=f(x)图象的一条对称轴,②正确; 根据函数的周期性可知,函数f(x)在[8,10]上单调递减,③不正确; 由于函数f(x)的图象关于直线x=-4对称, x1+x2 故如果方程f(x)=m在区间[-6,-2]上的两根为x1,x2,则=-4, 2即x1+x2=-8,④正确.故正确命题的序号为①②④. http://www.xiexingcun.com/ http://www.eywedu.net/ 数学大师 www.eywedu.net【全站免费】 (推荐时间:40分钟) 1.设函数f(x)=x3cos x+1.若f(a)=11,则f(-a)=________. 答案 -9 解析 令g(x)=f(x)-1=x3cos x, ∵g(-x)=(-x)3cos(-x)=-x3cos x=-g(x), ∴g(x)为定义在R上的奇函数.又∵f(a)=11, ∴g(a)=f(a)-1=10,g(-a)=-g(a)=-10. 又g(-a)=f(-a)-1,∴f(-a)=g(-a)+1=-9. 2.(2014·浙江改编)在同一直角坐标系中,函数f(x)=xa(x≥0),g(x)=logax的图象可能是________. 答案 ④ 解析 幂函数f(x)=xa的图象不过(0,1)点,图象①不正确;②由对数函数f(x)=logax的图象知01,而此时幂函数f(x)=xa的图象应是增长越来越快的变化趋势,故③错.图象④是正确的. 1的值为________.3.(2014·朝阳模拟)已知函数y=f(x)是奇函数,当x>0时,f(x)=lg x,则ff 100 答案 -lg 2 解析 当x<0时,-x>0,则f(-x)=lg(-x). 又函数f(x)为奇函数,f(-x)=-f(x), 所以当x<0时,f(x)=-lg(-x). 11所以f=lg =-2, 100100 http://www.xiexingcun.com/ http://www.eywedu.net/ 数学大师 www.eywedu.net【全站免费】 1=f(-2)=-lg 2. ff100 4.设函数f(x)=x(ex+aex)(x∈R)是偶函数,则实数a的值为________. - 答案 -1 解析 因为f(x)是偶函数,所以恒有f(-x)=f(x),即-x(ex+aex)=x(ex+aex),化简得x(e - - -x +ex)(a+1)=0.因为上式对任意实数x都成立,所以a=-1. 5.设偶函数f(x)满足f(x)=2x-4(x≥0),则f(x-2)>0的解集为________. 答案 {x|x<0或x>4} 解析 由于函数f(x)是偶函数,因此有f(|x|)=f(x),不等式f(x-2)>0, 即f(|x-2|)>0,f(|x-2|)=2|x2|-4>0, - |x-2|>2, 即x-2<-2或x-2>2,由此解得x<0或x>4. ∴f(x-2)>0的解集为{x|x<0或x>4}. 6.使log2(-x) log3x,x>0,7.函数f(x)=的图象上关于y轴对称的点共有________对. cos πx,x<0 答案 3 解析 因为y=cos πx是偶函数,图象关于y轴对称. 所以,本题可转化成求函数y=log3x与y=cos πx图象的交点个数的问题. 作函数图象如图,可知它们有三个交点,即函数f(x)图象上关于y轴对称的点有3对. 8.(2013·天津)已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.若实数1 a满足f(log2a)+f(loga)≤2f(1),则a的取值范围是________. 21 答案 2,2 http://www.xiexingcun.com/ http://www.eywedu.net/ 数学大师 www.eywedu.net【全站免费】 1- 解析 由题意知a>0,又loga=log2a1=-log2a. 2∵f(x)是R上的偶函数, 1 ∴f(log2a)=f(-log2a)=f(loga). 21 ∵f(log2a)+f(loga)≤2f(1), 2∴2f(log2a)≤2f(1),即f(log2a)≤f(1). 又∵f(x)在[0,+∞)上递增. ∴|log2a|≤1,-1≤log2a≤1, 1∴a∈2,2. 13exx≥2,9.已知函数f(x)=则f(ln 3)=________. fx+1x<2,答案 e 1 解析 f(ln 3)=f(ln 3+1)=eln 3+1=e,故填e. 3 10.已知函数f(x)=x|x-a|,若对任意的x1,x2∈[2,+∞),且x1≠x2,(x1-x2)·[f(x1)-f(x2)]>0恒成立,则实数a的取值范围为________. 答案 {a|a≤2} xx-a,x≥a,解析 f(x)=由(x1-x2)[f(x1)-f(x2)]>0知,函数y=f(x)在[2,+∞)单调递 -xx-a,x增,当a≤0时,满足题意,当a>0时,只需a≤2,即0ax+1,-1≤x<0, 11.设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上,f(x)=bx+2其 ,0≤x≤1,x+113中a,b∈R.若f2=f2,则a+3b的值为________. 答案 -10 解析 因为f(x)的周期为2, 331所以f2=f2-2=f-2, 11即f2=f-2. http://www.xiexingcun.com/ http://www.eywedu.net/ 数学大师 www.eywedu.net【全站免费】 b+2211b+41 -=-a+1,f=又因为f=, 22123 +12b+41 所以-a+1=. 232 整理,得a=-(b+1).① 3又因为f(-1)=f(1), b+2 所以-a+1=,即b=-2a.② 2将②代入①,得a=2,b=-4. 所以a+3b=2+3×(-4)=-10. 12.已知定义在R上的函数y=f(x)满足以下三个条件: ①对于任意的x∈R,都有f(x+4)=f(x); ②对于任意的x1,x2∈R,且0≤x1<x2≤2,都有f(x1)<f(x2); ③函数y=f(x+2)的图象关于y轴对称. 则判断f(4.5),f(6.5),f(7)的大小关系为________. 答案 f(4.5)<f(7)<f(6.5) 11 解析 由已知得f(x)是以4为周期且关于直线x=2对称的函数.所以f(4.5)=f(4+)=f(), 22f(7)=f(4+3)=f(3), 55 f(6.5)=f(4+)=f(). 22又f(x)在[0,2]上为增函数. 所以作出其在[0,4]上的图象知 f(4.5)<f(7)<f(6.5). 1+-1x 13.设函数f(x)=(x∈Z),给出以下三个结论: 2 ①f(x)为偶函数;②f(x)为周期函数;③f(x+1)+f(x)=1,其中正确结论的序号是________. 答案 ①②③ 解析 对于x∈Z,f(x)的图象为离散的点,关于y轴对称,①正确;f(x)为周期函数,T=2,1+-1x11+-1x ②正确;f(x+1)+f(x)=+ 22 + -1x1+-1x =1+=1,③正确. 2 + 14.能够把圆O:x2+y2=16的周长和面积同时分为相等的两部分的函数称为圆O的“和谐函数”,下列函数是圆O的“和谐函数”的是________. http://www.xiexingcun.com/ http://www.eywedu.net/ 数学大师 www.eywedu.net【全站免费】 5-x- ①f(x)=ex+ex;②f(x)=ln; 5+xx ③f(x)=tan;④f(x)=4x3+x. 2答案 ②③④ 解析 由“和谐函数”的定义知,若函数为“和谐函数”,则该函数为过原点的奇函数.①中,f(0)=e0+e0=2,所以f(x)=ex+e - -x 的图象不过原点,故f(x)=ex+e -x 不是“和谐函数”;② 5-05+x5-x中f(0)=ln=ln 1=0,且f(-x)=ln=-ln=-f(x),所以f(x)为奇函数,所以f(x) 5+05-x5+x5-x-xx =ln为“和谐函数”;③中,f(0)=tan 0=0,且f(-x)=tan=-tan=-f(x),f(x)为奇函 225+xx 数,故f(x)=tan为“和谐函数”;④中,f(0)=0,且f(x)为奇函数,故f(x)=4x3+x为“和谐 2函数”,所以,②③④中的函数都是“和谐函数”. http://www.xiexingcun.com/ http://www.eywedu.net/ 因篇幅问题不能全部显示,请点此查看更多更全内容