您好,欢迎来到小侦探旅游网。
搜索
您的当前位置:首页初中数学因式分解培优训练

初中数学因式分解培优训练

来源:小侦探旅游网
初中数学因式分解培优训练

第一讲:因式分解(一)

  多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.  1.运用公式法

  在整式的乘、除中,我们学过若干个乘法公式,现将

其反向使用,即为因式分解中常用的公式,例如:  (1)a2-b2=(a+b)(a-b);  (2)a2±2ab+b2=(a±b)2;  

(3)a3+b3=(a+b)(a2-ab+b2);  

(4)a3-b3=(a-b)(a2+ab+b2).

  下面再补充几个常用的公式:  

(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;  

(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);  

(7)an-bn=(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)其中n为正整数;

2

  

(8)an-bn=(a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1),其中n为偶数;  

(9)an+bn=(a+b)(an-1-an-2b+an-3b2-…-abn-2+bn-1),其中n为奇数.

  运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.  例1 分解因式:  

(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4;

  (2)x3-8y3-z3-6xyz;  

(3)a2+b2+c2-2bc+2ca-2ab;  (4)a7-a5b2+a2b5-b7.  解 (1)原式

=-2xn-1yn(x4n-2x2ny2+y4)

       

=-2xn-1yn[(x2n)2-2x2ny2+(y

2)2]

       =-2xn-1yn(x2n-y2)2        

=-2xn-1yn(xn-y)2(xn+y)2.  (2)原式

=x3+(-2y)3+(-z)3-3x(-2y)(-Z)     

=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).  (3)原式

=(a2-2ab+b2)+(-2bc+2ca)+c2

     =(a-b)2+2c(a-b)+c2     =(a-b+c)2.  本小题可以稍加变形,直接使用公式(5),解法如下:  原式

=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)

3

    =(a-b+c)2  (4)原式

=(a7-a5b2)+(a2b5-b7)     

=a5(a2-b2)+b5(a2-b2)      =(a2-b2)(a5+b5)     

=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)     

=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)

  例2 分解因式:a3+b3+c3-3abc.

  本题实际上就是用因式分解的方法证明前面给出的公式(6).

  分析 我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3  的正确性,现将此公式变形为

a3+b3=(a+b)3-3ab(a+b).

  这个式也是一个常用的公式,本题就借助于它来推导.  解 原式

=(a+b)3-3ab(a+b)+c3-3abc      =[(a+b)3+c3]-3ab(a+b+c)      =(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)     

=(a+b+c)(a2+b2+c2-ab-bc-ca).

  说明 公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为  a3+b3+c3-3abc  

   

  显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即

4

a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.

  如果令x=a3≥0,y=b3≥0,z=c3≥0,则有

  说明 在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.  2.拆项、添项法  等号成立的充要条件是x=y=z.这也是一个常用的结论.

  例3 分解因式:x15+x14+x13+…+x2+x+1.  分析 这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式an-bn来分解.  解 因为  

x16-1=(x-1)(x15+x14+x13+…x2+x+1),  所以  

的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.4 分解因式:x3-9x+8.

本题解法很多,这里只介绍运用拆项、添项法

5

  因式分解是多项式乘法  例  分析分解的几种解法,注意一下拆项、添项的目的与技巧.  解法1 将常数项8拆成-1+9.

  原式=x3-9x-1+9    =(x3-1)-9x+9    

=(x-1)(x2+x+1)-9(x-1)    =(x-1)(x2+x-8).  解法2 将一次项-9x拆成-x-8x.

  原式=x3-x-8x+8    =(x3-x)+(-8x+8)    

=x(x+1)(x-1)-8(x-1)    =(x-1)(x2+x-8).  解法3 将三次项x3拆成9x3-8x3.

  原式=9x3-8x3-9x+8    =(9x3-9x)+(-8x3+8)    

=9x(x+1)(x-1)-8(x-1)(x2+x+1)

    =(x-1)(x2+x-8).

  解法4 添加两项-x2+x2.  原式=x3-9x+8

    =x3-x2+x2-9x+8    

=x2(x-1)+(x-8)(x-1)    =(x-1)(x2+x-8).  说明 由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.  例5 分解因式:  (1)x9+x6+x3-3;  (2)(m2-1)(n2-1)+4mn;  

(3)(x+1)4+(x2-1)2+(x-1)4;  (4)a3b-ab3+a2+b2+1.  解 (1)将-3拆成-1-1-1.  原式=x9+x6+x3-1-1-1    

=(x9-1)+(x6-1)+(x3-1)

6

    

=(x3-1)(x6+x3+1)+(x3-1)(x

3+1)+(x3-1)

    =(x3-1)(x6+2x3+3)    

=(x-1)(x2+x+1)(x6+2x3+3).  (2)将4mn拆成2mn+2mn.  原式

=(m2-1)(n2-1)+2mn+2mn    

=m2n2-m2-n2+1+2mn+2mn    

=(m2n2+2mn+1)-(m2-2mn+n2)    =(mn+1)2-(m-n)2    

=(mn+m-n+1)(mn-m+n+1).  (3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.  原式

=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4    =

[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2

    =

[(x+1)2+(x-1)2]2-(x2-1)2    

=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).

  (4)添加两项+ab-ab.  原式=a3b-ab3+a2+b2+1+ab-ab    

=(a3b-ab3)+(a2-ab)+(ab+b2+1)    

=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)    =a(a-b)

[b(a+b)+1]+(ab+b2+1)    

=[a(a-b)+1](ab+b2+1)    

=(a2-ab+1)(b2+ab+1).  说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成

7

的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法

复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.

6 分解因式:(x2+x+1)(x2+x+2)-12. 将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了. 设x2+x=y,则

  原式

=(y+1)(y+2)-12=y2+3y-10    

=(y-2)(y+5)=(x2+x-2)(x2+x+5)    

=(x-1)(x+2)(x2+x+5).  说明 本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.  例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.  分析 先将两个括号内的多项式分解因式,然后再重新组合.  解 原式

=(x+1)(x+2)(2x+1)(2x+3)-90     

=[(x+1)(2x+3)][(x+2)(2x+1)]-90

8

    换元法指的是将一个较  例  分析  解     

=(2x2+5x+3)(2x2+5x+2)-90.

  令y=2x2+5x+2,则  原式=y(y+1)-90=y2+y-90    =(y+10)(y-9)    

=(2x2+5x+12)(2x2+5x-7)    

=(2x2+5x+12)(2x+7)(x-1).  说明 对多项式适当的恒等变形是我们找到新元(y)的基础.

  例8 分解因式:

(x2+4x+8)2+3x(x2+4x+8)+2x2.  解 设x2+4x+8=y,则  原式

=y2+3xy+2x2=(y+2x)(y+x)    

=(x2+6x+8)(x2+5x+8)    

=(x+2)(x+4)(x2+5x+8).  说明 由本题可知,用换元法分解因式时,不必将原

式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.9 分解因式:6x4+7x3-36x2-7x+6.1 原式=6(x4+1)+7x(x2-1)-36x2=6

[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2

=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).

9

  例  解法       

       

                     

         说明 本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.  解法2      

   

  原式=x2[6(t2+2)+7t-36]    

=x2(6t2+7t-24)=x2(2t-3)(3t+8)    

=x2[2(x-1/x)-3][3(x-1/x)+8]    

=(2x2-3x-2)(3x2+8x-3)    

=(2x+1)(x-2)(3x-1)(x+3).

  1.双十字相乘法  分解二次三项式时,我们常用十字相乘法.对于某些

  例10 分解因式:(x2+xy+y2)-4xy(x2+y2).  分析 本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.  解 原式

=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则  原式=(u2-v)2-4v(u2-2v)    =u4-6u2v+9v2    =(u2-3v)2

    =(x2+2xy+y2-3xy)2    =(x2-xy+y2)2.

第二讲:因式分解(二)

二元二次六项式

(ax2+bxy+cy2+dx+ey+f),我

10

们也可以用十字相乘法分解因式.

  例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为

2x2-(5+7y)x-(22y2-35y+3),  可以看作是关于x的二次三项式.

  对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为

  即:

-22y2+35y-3=(2y-3)(-11y+1).

  再利用十字相乘法对关于x的二次三项式分解

  所以,原式=[x+(2y-3)][2x+(-11y+1)]    

=(x+2y-3)(2x-11y+1).  上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:

  它表示的是下面三个关系式:

11

  

(x+2y)(2x-11y)=2x2-7xy-22y2;

  (x-3)(2x+1)=2x2-5x-3;  

(2y-3)(-11y+1)=-22y2+35y-3.

  这就是所谓的双十字相乘法.

  用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:  (1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);  (2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的

ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.

  例1 分解因式:  (1)x2-3xy-10y2+x+9y-2;  (2)x2-y2+5x+3y+4;  (3)xy+y2+x-y-2;  

(4)6x2-7xy-3y2-xz+7yz-2z

2.

  解 (1)

  原式=(x-5y+2)(x+2y-1).  (2)

  原式=(x+y+1)(x-y+4).

12

(3)原式中缺x2项,可把这一项的系数看成0来分解.

  原式=(y+1)(x+y-2).  (4)

13

    原式=(2x-3y+z)(3x+y-2z).

  说明 (4)中有三个字母,解法仍与前面的类似.  2.求根法

  我们把形如anxn+an-1xn-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如  f(x)=x2-3x+2,g(x)=x5+x2+6,…,  当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)  f(1)=12-3×1+2=0;

  f(-2)=(-2)2-3×(-2)+2=12.

  若f(a)=0,则称a为多项式f(x)的一个根.

  定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.

14

  根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.  定理2  

  的根,则必有p是a0的约数,q是an的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为an的约数.

  我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.

  例2 分解因式:x3-4x2+6x-4.

  分析 这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有

15

  f(2)=23-4×22+6×2-4=0,

  即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.

  解法1 用分组分解法,使每组都有因式(x-2).

  原式=(x3-2x2)-(2x2-4x)+(2x-4)    =x2(x-2)-2x(x-2)+2(x-2)    =(x-2)(x2-2x+2).

  解法2 用多项式除法,将原式除以(x-2),

  所以

原式=(x-2)(x2-2x+2).

  说明 在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.

16

  例3 分解因式:9x4-3x3+7x2-3x-2.  分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:

  所以,原式有因式9x2-3x-2.  解 9x4-3x3+7x2-3x-2   =9x4-3x3-2x2+9x2-3x-2   =x2(9x3-3x-2)+9x2-3x-2   =(9x2-3x-2)(x2+1)   =(3x+1)(3x-2)(x2+1)

  说明 若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式

  可以化为9x2-3x-2,这样可以简化分解过程.

17

  总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.

  3.待定系数法

  待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.

  在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.

18

  例4 分解因式:x2+3xy+2y2+4x+5y+3.  分析 由于

  (x2+3xy+2y2)=(x+2y)(x+y),

  若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.  解 设

  x2+3xy+2y2+4x+5y+3  =(x+2y+m)(x+y+n)

  =x2+3xy+2y2+(m+n)x+(m+2n)y+mn,  比较两边对应项的系数,则有

  解之得m=3,n=1.所以

原式=(x+2y+3)(x+y+1).

  说明 本题也可用双十字相乘法,请同学们自己解一下.

  例5 分解因式:x4-2x3-27x2-44x+7.

19

  分析 本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.  解 设

  原式=(x2+ax+b)(x2+cx+d)

    =x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,  所以有

  由bd=7,先考虑b=1,d=7有

    所以

 

  原式=(x2-7x+1)(x2+5x+7).

20

  说明 由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.

  本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.

21

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- xiaozhentang.com 版权所有 湘ICP备2023022495号-4

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务