2019年大连市普通高中学生学业水平考试模拟试卷
数 学
(本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 满分100分,考试时间90分钟) 注意事项:
1.答卷前,考生务必将自己的姓名,准考证号填写在答题卡上.
2.答案一律写在答题卡上,写在本卷上无效,考试结束后,将本试卷和答题卡一并交回.
3.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号. 参考公式:
柱体体积公式 Vsh,锥体体积公式 V中R为球的半径).
第I卷
一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要
求的)
(1)集合A{1,2,3},B{2,4,5},则A(A){2}
(B){6}
1sh(其中s为底面面积,h为高); 球的表面积公式 S4R2(其3B=( )
(C){1,3,4,5,6} (D){1,2,3,4,5}
(2)函数f(x)2x在区间[-2,-1]上的最大值是( ) (A)1 (B)2 (C)4 (D)(3)函数f(x)cos2x的最小正周期是( )
(A)2 (B) (C)
1 2 (D) 24(4)已知f(x)x32x,则f(a)f(a)的值是 ( )
(A) 0 (B) –1 (C) 1 (D) 2 (5)如图所示,一个空间几何体的主视图和左视图都是边长为 1的正方形,俯视图是一个直径为1的圆,那么这个几何体的 表面积为( ) 主视图 左视图 俯视图
(A)π (B)2π (C)3π (D)4π
(6)已知向量a(1,3),向量b(x,1),若ab,则实数x的值为( ) (A)3 (B)3 (C)1 (D)1
(7)在某次考试中,共有100个学生参加考试,如果某题的得分情况如下
得分 百分率 那么这些得分的众数是( ) (A)37.0% (B)20.2% (C)0分 (D)4分
0分 37.0 1分 8.6 2分 6.0 3分 28.2 4分 20.2 32ˆ21.5x,则变量x 增加一个单位时 ( ) (8)若回归直线的方程为y(A)y 平均增加1.5个单位 (B) y 平均增加2个单位 (C)y 平均减少1.5个单位 (D) y 平均减少2个单位
(9)若直线l过点(1,2)且与直线2x3y40垂直,则l的方程为( )
(A)3x2y10 (B)2x3y10 (C)3x2y10
(D)2x3y10
uuuruuuruuur(10)已知AB(1,1),C(0,1),若CD2AB,则点D的坐标为( )
(A)(2,3) (B)(2,3) (C)(2,1) (D)(2,1) (11)对于不同直线a,b,l以及平面,下列说法中正确的是( )
(A)如果aPb,aP,则bP (B)如果al,bl,则aPb (C)如果aP,ba,则b (D)如果a,b,则aPb
2
(12)等差数列{an}中,a2+a5+a8=12,那么函数f(x)x+(a4+a6)x+10零点个数为( )
(A)0 (B)1 (C)2 (D)1或2
第Ⅱ卷
二、填空题:本大题共4小题,每小题3分,共12分.
(13) 某超市有三类食品,其中果蔬类、奶制品类及肉制品类分别有20种、15种和10种, 现采用分层抽样的方法抽
取一个容量为n的样本进行安全检测,若果蔬类抽取4种,则n为 . (14)圆C的方程是x2+y2+2x+4y=0,则圆的半径是 .
(15)直线l的斜率是3,且过点A(1,-2),则直线l的方程是 .
x10(16)若实数x,y满足xy10,则y的最大值是 .
xy10三、解答题:本大题共5小题,共52分.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分10分)
如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,
PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(Ⅰ)证明 PA//平面EDB; (Ⅱ)证明PB⊥平面EFD.
(18)(本小题满分10分) 等差数列an中,a74,a192a9. (Ⅰ)求数列an的通项公式; (Ⅱ)设bn
(19)(本小题满分10分)
已知△ABC的三个内角A,B,C的对边分别为a,b,c.若sin2Asin2Bsin2CsinAsinB. (Ⅰ)求角C的大小;
(Ⅱ)若△ABC的面积为23,c=23,求△ABC的周长.
PFEDCAB1,求数列bn的前n项和Sn. nan
(20)(本小题满分10分)
已知圆C的圆心C在直线yx上,且与x轴正半轴相切,点C与坐标原点O的距离为2. (Ⅰ)求圆C的标准方程;
(Ⅱ)斜率存在的直线l过点M(1,)且与圆C相交于A,B两点,求弦长AB的最小值.
(21)(本小题满分10分)
已知函数f(x)log1(x1),g(x)x2ax6.
2212(Ⅰ)若g(x)为偶函数,求a的值并写出g(x)的增区间;
(Ⅱ)若关于x的不等式g(x)0的解集为{x|2x3},当x1时,求
g(x)的最小值; x1(Ⅲ)对任意的x1[1,),x2[2,4],不等式f(x1)g(x2)恒成立,求实数a的取值范围.
2019年大连市普通高中学生学业水平考试模拟试卷
数学参与评分标准
说明:
一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.
二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.
三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一、选择题
(1)(D);(2)(C);(3)(B);(4)(A);(5)(A);(6)(B);(7)(C);(8)(C);(9)(A);
(10)(D);(11)(D);(12)(C). 二、填空题
(13)9;(14)5;(15)3xy50 ; (16)2. 三、解答题
(17)(本小题满分10分)
证明:(Ⅰ)连结AC,AC交BD于O.连结EO.∵ 底面ABCD是正方形,∴ 点O是AC的中点.在△PAC中,EO是中位线,∴ PA//EO.而EO平面EDB, 且
PA平面ED,所以,PA//平面
E. ·······································5分 D(Ⅱ)∵PD ⊥底面ABCD,且BC底面ABCD,∴ PD⊥BC.
∵ 底面ABCD是正方形,有DC⊥BC,PDIDCD,PD平面PDC,
DC平面PDC,∴ BC⊥平面PDC. 而DE平面PDC,∴DE⊥BC.
又∵PDCD,E是PC的中点,∴ DE⊥PC,PCIBCC,
BC平面PBC,PC平面PBC.∴ DE⊥平面PBC.而PB平面PBC,
∴ DE⊥PB.又EF⊥PB,且DEIEFE,DE平面EFD,
EF平面EFD,所以PB⊥平面
EFD.···········································
···10分
(18)(本小题满分10分)
解:(Ⅰ)设等差数列an的公差为d,Qa74,a192a9,
a16d4,··································
a18d2a8d11····························3分
a11,d1,······································2································4分
ann1.·······································2·······························5分
(
Ⅱ
)
bn1222,·································nann(n1)nn1···············7分
1112n111Sn21...21.··················10nn1n1n1223分
(19)解:(Ⅰ)由sin2Asin2Bsin2CsinAsinB及正弦定理 得
a2b2c2ab,········································
··························2分 由
余
弦
定
理
a2b2c21cCo,····································s2ab2···········4分
QC(0,),
C3.············································
······················5分 (Ⅱ)由(1)知C分
由
余
弦
3,S113absinCab23,ab8.··············7222定理,
c2a2b22ab分
12ab3ab12,····························82ab362,
ab6,··········································
···············9分
ABC周长为
623.············································
··················10分 (20)解:(Ⅰ)由题可设C(a,a),半径r,QCO圆
2a2a2.a1.········3分
正
半
轴
相
切
C与
x轴
a1,r1,··········································
········4分
圆C的标准方程:
(x1)2(y1)21.·······································
·······5分 (
Ⅱ
)
设
直
线
l的方程:
y1k(x1),········································2··········6分 点
C到直线l的距离
d121k2,·········································
················8分 弦
长
AB211,·····································24(1k)··························9分 当
k0时,弦长
AB的最小值
AB3.···········································
····10分 (
21
)
解
:
(
Ⅰ
)
a0,增区间为
0,.·············································
······2分 (
Ⅱ
)
由
题
a235,··········································
···························3分
gxx25x62x13·······························x1x1x1·················4分 Qx1,
x10,
x1分
当
23223,··································5x12x1且仅当
x1,即
x21时取等,
(
gx223.·····················6分 x1Ⅲ
)
Qx1,
x1212,
fx1log1x1211.·································7分
2 gxx2ax61在x2,4上恒成立.
设F(x)x2ax61, 当
a112,即a4时,F(x)minF(2)2a110,a, 22.······································
11a,42··································9分
aa2a70, 当24,即4a8时,F(x)minF224
27a27a4,27.·······························
当分
,
a234,即a8时,F(x)minF(4)4a230,a,···············1124a为空集. 综上,
11a,27.·········································
2··········12分
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- xiaozhentang.com 版权所有 湘ICP备2023022495号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务